JOURNAL BROWSE
Search
Advanced SearchSearch Tips
A Novel Controller for Electric Springs Based on Bode Diagram Optimization
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Journal of Power Electronics
  • Volume 16, Issue 4,  2016, pp.1396-1406
  • Publisher : The Korean Institute of Power Electronics
  • DOI : 10.6113/JPE.2016.16.4.1396
 Title & Authors
A Novel Controller for Electric Springs Based on Bode Diagram Optimization
Wang, Qingsong; Cheng, Ming; Jiang, Yunlei;
  PDF(new window)
 Abstract
A novel controller design is presented for the recently proposed electric springs (ESs). The dynamic modeling is analyzed first, and the initial Bode diagram is derived from the s-domain transfer function in the open loop. The design objective is set according to the characteristics of a minimum phase system. Step-by-step optimizations of the Bode diagram are provided to illustrate the proposed controller, the design of which is different from the classical multistage leading/lagging design. The final controller is the accumulation of the transfer function at each step. With the controller and the recently proposed δ control, the critical load voltage can be regulated to follow the desired waveform precisely while the fluctuations and distortions of the input voltage are passed to the non-critical loads. Frequency responses at any point can be modified in the Bode diagram. The results of the modeling and controller design are validated via simulations. Hardware and software designs are provided. A digital phase locked loop is realized with the platform of a digital signal processor. The effectiveness of the proposed control is also validated by experimental results.
 Keywords
Bode diagram;Controller design;Electric spring;Minimum phase system;Modeling;Phase control;Renewable energy systems;
 Language
English
 Cited by
 References
1.
M. Cheng and Y. Zhu, “The state of the art of wind energy conversion systems and technologies: A review,” Energy Convers. Manag., Vol. 88, pp. 332-347, Dec. 2014. crossref(new window)

2.
S. C. Lee, S. J. Kim, and S. H. Kim, “Demand side management with air conditioner loads based on the queuing system model,” IEEE Trans. Power Syst., Vol. 26, No. 2, pp. 661-668, May 2011. crossref(new window)

3.
P. Palensky and D. Dietrich, “Demand side management: demand response, intelligent energy systems, and smart loads,” IEEE Trans. Ind. Informat., Vol. 7, No. 3, pp. 381-388, Aug. 2011. crossref(new window)

4.
S. X. Du, J. J. Liu, J. L. Lin, and Y. J. He, “A novel DC voltage control method for STATCOM based on hybrid multilevel H-Bridge converter,” IEEE Trans. Power Electron., Vol. 28, No. 1, pp. 101-111, Jan. 2013. crossref(new window)

5.
P C. O. Gercek and M.Ermis, “Elimination of coupling transformer core saturation in cascaded multilevel converter-based T-STATCOM systems,” IEEE Trans. Power Electron., Vol. 29, No. 12, pp. 6796-6809, Dec. 2014. crossref(new window)

6.
A. Luo, Z. K. Shuai, W. J. Zhu, and Z. J. Shen, “Combined system for harmonic suppression and reactive power compensation,” IEEE Trans. Ind. Electron., Vol. 56, No. 2, pp. 418-428, Feb. 2009. crossref(new window)

7.
T. J. Dionise, “Assessing the performance of a static var compensator for an electric arc furnace,” IEEE Trans. Ind. Applicat., Vol. 50, No. 3, pp. 1619-1629, May/Jun. 2014. crossref(new window)

8.
P. Sotoodeh and R. D. Miller, “Design and implementation of an 11-level inverter with FACTS capability for distributed energy systems,” IEEE J. Emerging Sel. Topics Power Electron., Vol. 2, No. 1, pp. 87-96, Mar. 2014. crossref(new window)

9.
A. J. Conejo, J. M. Morales, and L. Baringo, “Real-time demand response model,” IEEE Trans. Smart Grid, Vol. 1, No. 3, pp. 236-242, Dec. 2010. crossref(new window)

10.
S. Y. R. Hui, C. K. Lee, and F. Wu, “Electric springs – A new smart grid technology,” IEEE Trans. Smart Grid, Vol. 3, No. 3, pp. 1552-1561, Sep. 2012. crossref(new window)

11.
C. K. Lee and S. Y. R. Hui, “Reduction of energy storage requirements in future smart grid using electric springs,” IEEE Trans. Smart Grid, Vol. 4, No. 3, pp. 1282-1288, Sep. 2013. crossref(new window)

12.
C. K. Lee, S. C. Tan, F. F. Wu, S. Y. R. Hui, and B. Chaudhuri, "Use of Hooke's law for stabilizing future smart grid—the electric spring concept," in Proc. IEEE Energy Conversion Cong. Expo., pp. 5253-5257, 2013.

13.
P. Kanjiya and V. Khadkikar, "Enhancing power quality and stability of future smart grid with intermittent renewable energy sources using electric springs," in Proc. Int. Conf. Renewable Energy Res. Applicat., pp. 918-922, 2013.

14.
S. Yan, S. C. Tan, C. K. Lee, and S. Y. R. Hui, "Electric spring for power quality improvement," in Proc. 29th Annual IEEE Applicat. Power Electron. Conf. Expo., pp. 2140-2147, 2014.

15.
C. K. Lee, B. Chaudhuri, and S. Y. R. Hui, “Hardware and control implementation of electric springs for stabilizing future smart grid with intermittent renewable energy sources,” IEEE J. Emerging Sel. Topics Power Electron., Vol. 1, No. 1, pp. 18-27, Mar. 2013. crossref(new window)

16.
C. K. Lee, K. L. Cheng, and W. M. Ng, "Load characterisation of electric spring," in Proc. IEEE Energy Conversion Cong. Expo., pp. 4665-4670, 2013.

17.
S. C. Tan, C. K. Lee, and S. Y. R. Hui, “General steady-state analysis and control principle of electric springs with active and reactive power compensations,” IEEE Trans. Power Electron., Vol. 28, No. 8, pp. 3958-3969, Aug. 2013. crossref(new window)

18.
N. R. Chaudhuiri, C. K. Lee, B. Chaudhuri, and S. Y. R. Hui, “Dynamic modeling of electric springs,” IEEE Trans. Smart Grid, Vol. 5, No. 5, pp. 2450-2458, Sep. 2014. crossref(new window)

19.
Q. Wang, M. Cheng, Z. Chen, and Z. Wang, “Steady-state analysis of electric springs with a novel δ control,” IEEE Trans. Power Electron., Vol. 30, No. 12, pp. 7159-7169, Dec. 2015. crossref(new window)

20.
M. Tanemura, Y. Chida, H. Kobayashi, and M. Hirata, "Parallel feedforward design using LMI for unknown disturbance estimation of non-minimum phase system," in Proc. SICE Annual Conf., pp.1998-2003, 2014.

21.
Z. Zou, K. Zhou, Z. Wang, and M. Cheng, “Frequency-adaptive fractional-order repetitive control of shunt active power filters,” IEEE Trans. Ind. Electron., Vol. 62, No. 3, pp. 1659-1668, Mar. 2015. crossref(new window)