JOURNAL BROWSE
Search
Advanced SearchSearch Tips
The Effect of Series and Shunt Redundancy on Power Semiconductor Reliability
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Journal of Power Electronics
  • Volume 16, Issue 4,  2016, pp.1426-1437
  • Publisher : The Korean Institute of Power Electronics
  • DOI : 10.6113/JPE.2016.16.4.1426
 Title & Authors
The Effect of Series and Shunt Redundancy on Power Semiconductor Reliability
Nozadian, Mohsen Hasan Babayi; Zarbil, Mohammad Shadnam; Abapour, Mehdi;
  PDF(new window)
 Abstract
In different industrial and mission oriented applications, redundant or standby semiconductor systems can be implemented to improve the reliability of power electronics equipment. The proper structure for implementation can be one of the redundant or standby structures for series or parallel switches. This selection is determined according to the type and failure rate of the fault. In this paper, the reliability and the mean time to failure (MTTF) for each of the series and parallel configurations in two redundant and standby structures of semiconductor switches have been studied based on different failure rates. The Markov model is used for reliability and MTTF equation acquisitions. According to the different values for the reliability of the series and parallel structures during SC and OC faults, a comprehensive comparison between each of the series and parallel structures for different failure rates will be made. According to the type of fault and the structure of the switches, the reliability of the switches in the redundant structure is higher than that in the other structures. Furthermore, the performance of the proposed series and parallel structures of switches during SC and OC faults, results in an improvement in the reliability of the boost dc/dc converter. These studies aid in choosing a configuration to improve the reliability of power electronics equipment depending on the specifications of the implemented devices.
 Keywords
Failure rate;Markov model;Mean time to failure;Redundant system;Reliability;
 Language
English
 Cited by
 References
1.
L. R. Gopi Reddy, L. M. Tolbert, and B. Ozpineci, “Power cycle testing of power switches: a literature survey,” IEEE Trans. Power Electron., Vol. 30, No. 5, pp. 2465-2473, 2015.

2.
Y. Song and B. Wang, “Survey on reliability of power electronic systems,” IEEE Trans. Power Electron., Vol. 28, No. 1, pp. 591-604, Apr. 2012. crossref(new window)

3.
U. M. Choi, F. Blaabjerg, and K. B. Lee, “Reliability improvement of a T-type three-level inverter with fault-tolerant control strategy,” IEEE Trans. Power Electron., Vol. 30, No. 5, pp. 2660-2673, May 2015. crossref(new window)

4.
A. Tajfar and S. K. Mazumder, “A fault-tolerant switching scheme for an isolated DC/AC matrix converter,” IEEE Trans. Power Electron., Vol. 30, No. 5, pp. 2798-2813, May 2015. crossref(new window)

5.
A. Alghassi, S. Perinpanayagam, M. Samie, and T. Sreenuch, “Computationally efficient, real-time, and embeddable prognostic techniques for power electronics.” IEEE Trans. Power Electron., Vol. 30, No. 5, pp. 2623-2634, May 2015. crossref(new window)

6.
Y. Chen, Y. Nan, Q. Kong, and S. Zhong, “An input-adaptive self-oscillating boost converter for fault-tolerant LED driving with wide-range ultralow voltage input,” IEEE Trans. Power Electron., Vol. 30, No. 5, pp. 2743-2752, May 2015. crossref(new window)

7.
X. Sun, Y. Zhou, W. Wang, B. Wang, and Z. Zhang, “Alternative source-port-tolerant series-connected double-input DC–DC converter,” IEEE Trans. Power Electron., Vol. 30, No. 5, pp. 2733-2742, May 2015. crossref(new window)

8.
C. Petit, A. Meinertzhagen , D. Zander, O. Simonetti, M. Fadlallah, and T. Maurel, “Low voltage SILC and P- and N-MOSFET gate oxide reliability,” Microelectronics Reliability, Vol. 45, No. 3-4, pp. 479-485, Mar./Apr. 2005. crossref(new window)

9.
H. Kaur, S. Kabra, S. Bindra, S. Haldar, and R. S. Gupta, “Impact of graded channel (GC) design in fully depleted cylindrical/surrounding gate MOSFET (FD CGT/SGT) for improved short channel immunity and hot carrier reliability,” Solid-State Electronics, Vol. 51, No. 3, pp. 398-404, Mar. 2007. crossref(new window)

10.
R. Fernández, R. Rodríguez, M. Nafría, X. Aymerich, B. Kaczer, and G. Groeseneken, “FinFET and MOSFET preliminary comparison of gate oxide reliability,” Elsevier Microelectronics Reliability, Vol. 46, No. 9-11, pp. 1608-1611, Sep./Nov. 2006. crossref(new window)

11.
C. Busca, R. Teodorescu, F. Blaabjerg, S. Munk-Nielsen, L. Helle, T. Abeyasekera, and P. Rodriguez, “An overview of the reliability prediction related aspects of high power IGBTs in wind power applications,” Elsevier Microelectronics Reliability, Vol. 51, No. 9-11, pp. 1903-1907, Sep./Nov. 2011. crossref(new window)

12.
E. E. Kostandyan and K. Ma, “Reliability estimation with uncertainties consideration for high power IGBTs in 2.3 MW wind turbine converter system,” Elsevier Microelectronics Reliability, Vol. 52, No. 9-10, pp. 2403-2408, Sep./Oct. 2012. crossref(new window)

13.
Y. Song and B. Wang, “Survey on reliability of power electronic systems,” IEEE Trans. Power Electron., Vol. 28, No. 1, pp. 591-604, Jan. 2013. crossref(new window)

14.
H. Wang and F. Blaabjerg, “Reliability of capacitors for DC-Link applications in power electronic converters – An overview,” IEEE Trans. Ind. Appl., Vol. 50, No. 5, pp. 3569-3578, Sep. 2014 crossref(new window)

15.
W. Zhang, D. Xu, P. N. Enjeti, H. Li, J. T. Hawke, and H. S. Krishnamoorthy, “Survey on fault-tolerant techniques for power electronic converters,” IEEE Trans. Power Electron., Vol. 29, No. 12, pp. 6319-6331, Dec. 2014. crossref(new window)

16.
B. Mirafzal, “Survey of fault-tolerance techniques for three-phase voltage source inverters,” IEEE Trans. Ind. Electron., Vol. 61, No. 10, pp. 5192-5202, Oct. 2014. crossref(new window)

17.
J.-C. Lee, T.-J. Kim, D.-W. Kang, and D.-S. Hyun, "A control method for improvement of reliability in fault tolerant NPC inverter system," in Proc. IEEE Power Electron. Specialists Conf., pp. 1-5, 2006.

18.
F. Richardeau and T. T. L. Pham, “Reliability calculation of multilevel converters: Theory and applications,” IEEE Trans. Ind. Electron., Vol. 60, No. 10, pp. 4225-4233, Oct. 2013. crossref(new window)

19.
M. Arifujjaman, “Reliability comparison of power electronic converters for grid-connected 1.5kW wind energy conversion system,” Renewable Energy, Vol. 57, pp. 348-357, Sep. 2013. crossref(new window)

20.
X. Yu and A. M. Khambadkone, “Reliability analysis and cost optimization of parallel-inverter system,” IEEE Trans. Ind. Electron., Vol. 59, No. 10, pp. 3881-3889, Oct. 2012. crossref(new window)

21.
E. G. Strangas, S. Aviyente, J. D. Neely, and S. S. H. Zaidi, “The effect of failure prognosis and mitigation on the reliability of permanent-magnet AC motor drives,” IEEE Trans. Ind. Electron., Vol. 60, No. 8, pp. 3519-3528, Aug. 2013. crossref(new window)

22.
V. Esteve, J. Jordán, E. S. Kilders, E. J. Dede, E. Maset, J. B. Ejea, and A. Ferreres, “Improving the reliability of series resonant inverters for induction heating applications,” IEEE Trans. Ind. Electron., Vol. 61, No. 5, pp. 2564-2572, May 2014. crossref(new window)

23.
A.E. Khosroshahi, M. Abapour, and M. sabahi, “Reliability evaluation of conventional and interleaved DC-DC boost converters,” IEEE Trans. Power Electron. Vol. 30, No. 10, pp. 5821-5828, Oct. 2015. crossref(new window)

24.
D. J. Smith, Reliability, Maintainability and Risk 8th Edition: Practical Methods for Engineers including Reliability Centred Maintenance and Safety-Related Systems, Elsevier, Great Britain, Appendix 5: Failure Mode Percentages, 2011.

25.
Reliability prediction of electronic equipments, Relex Software Corp., Greensburg, PA, Rep. MIL-HDBK-217, 1990.