The Effect of Series and Shunt Redundancy on Power Semiconductor Reliability

- Journal title : Journal of Power Electronics
- Volume 16, Issue 4, 2016, pp.1426-1437
- Publisher : The Korean Institute of Power Electronics
- DOI : 10.6113/JPE.2016.16.4.1426

Title & Authors

The Effect of Series and Shunt Redundancy on Power Semiconductor Reliability

Nozadian, Mohsen Hasan Babayi; Zarbil, Mohammad Shadnam; Abapour, Mehdi;

Nozadian, Mohsen Hasan Babayi; Zarbil, Mohammad Shadnam; Abapour, Mehdi;

Abstract

In different industrial and mission oriented applications, redundant or standby semiconductor systems can be implemented to improve the reliability of power electronics equipment. The proper structure for implementation can be one of the redundant or standby structures for series or parallel switches. This selection is determined according to the type and failure rate of the fault. In this paper, the reliability and the mean time to failure (MTTF) for each of the series and parallel configurations in two redundant and standby structures of semiconductor switches have been studied based on different failure rates. The Markov model is used for reliability and MTTF equation acquisitions. According to the different values for the reliability of the series and parallel structures during SC and OC faults, a comprehensive comparison between each of the series and parallel structures for different failure rates will be made. According to the type of fault and the structure of the switches, the reliability of the switches in the redundant structure is higher than that in the other structures. Furthermore, the performance of the proposed series and parallel structures of switches during SC and OC faults, results in an improvement in the reliability of the boost dc/dc converter. These studies aid in choosing a configuration to improve the reliability of power electronics equipment depending on the specifications of the implemented devices.

Keywords

Failure rate;Markov model;Mean time to failure;Redundant system;Reliability;

Language

English

References

1.

L. R. Gopi Reddy, L. M. Tolbert, and B. Ozpineci, “Power cycle testing of power switches: a literature survey,” IEEE Trans. Power Electron., Vol. 30, No. 5, pp. 2465-2473, 2015.

2.

Y. Song and B. Wang, “Survey on reliability of power electronic systems,” IEEE Trans. Power Electron., Vol. 28, No. 1, pp. 591-604, Apr. 2012.

3.

U. M. Choi, F. Blaabjerg, and K. B. Lee, “Reliability improvement of a T-type three-level inverter with fault-tolerant control strategy,” IEEE Trans. Power Electron., Vol. 30, No. 5, pp. 2660-2673, May 2015.

4.

A. Tajfar and S. K. Mazumder, “A fault-tolerant switching scheme for an isolated DC/AC matrix converter,” IEEE Trans. Power Electron., Vol. 30, No. 5, pp. 2798-2813, May 2015.

5.

A. Alghassi, S. Perinpanayagam, M. Samie, and T. Sreenuch, “Computationally efficient, real-time, and embeddable prognostic techniques for power electronics.” IEEE Trans. Power Electron., Vol. 30, No. 5, pp. 2623-2634, May 2015.

6.

Y. Chen, Y. Nan, Q. Kong, and S. Zhong, “An input-adaptive self-oscillating boost converter for fault-tolerant LED driving with wide-range ultralow voltage input,” IEEE Trans. Power Electron., Vol. 30, No. 5, pp. 2743-2752, May 2015.

7.

X. Sun, Y. Zhou, W. Wang, B. Wang, and Z. Zhang, “Alternative source-port-tolerant series-connected double-input DC–DC converter,” IEEE Trans. Power Electron., Vol. 30, No. 5, pp. 2733-2742, May 2015.

8.

C. Petit, A. Meinertzhagen , D. Zander, O. Simonetti, M. Fadlallah, and T. Maurel, “Low voltage SILC and P- and N-MOSFET gate oxide reliability,” Microelectronics Reliability, Vol. 45, No. 3-4, pp. 479-485, Mar./Apr. 2005.

9.

H. Kaur, S. Kabra, S. Bindra, S. Haldar, and R. S. Gupta, “Impact of graded channel (GC) design in fully depleted cylindrical/surrounding gate MOSFET (FD CGT/SGT) for improved short channel immunity and hot carrier reliability,” Solid-State Electronics, Vol. 51, No. 3, pp. 398-404, Mar. 2007.

10.

R. Fernández, R. Rodríguez, M. Nafría, X. Aymerich, B. Kaczer, and G. Groeseneken, “FinFET and MOSFET preliminary comparison of gate oxide reliability,” Elsevier Microelectronics Reliability, Vol. 46, No. 9-11, pp. 1608-1611, Sep./Nov. 2006.

11.

C. Busca, R. Teodorescu, F. Blaabjerg, S. Munk-Nielsen, L. Helle, T. Abeyasekera, and P. Rodriguez, “An overview of the reliability prediction related aspects of high power IGBTs in wind power applications,” Elsevier Microelectronics Reliability, Vol. 51, No. 9-11, pp. 1903-1907, Sep./Nov. 2011.

12.

E. E. Kostandyan and K. Ma, “Reliability estimation with uncertainties consideration for high power IGBTs in 2.3 MW wind turbine converter system,” Elsevier Microelectronics Reliability, Vol. 52, No. 9-10, pp. 2403-2408, Sep./Oct. 2012.

13.

Y. Song and B. Wang, “Survey on reliability of power electronic systems,” IEEE Trans. Power Electron., Vol. 28, No. 1, pp. 591-604, Jan. 2013.

14.

H. Wang and F. Blaabjerg, “Reliability of capacitors for DC-Link applications in power electronic converters – An overview,” IEEE Trans. Ind. Appl., Vol. 50, No. 5, pp. 3569-3578, Sep. 2014

15.

W. Zhang, D. Xu, P. N. Enjeti, H. Li, J. T. Hawke, and H. S. Krishnamoorthy, “Survey on fault-tolerant techniques for power electronic converters,” IEEE Trans. Power Electron., Vol. 29, No. 12, pp. 6319-6331, Dec. 2014.

16.

B. Mirafzal, “Survey of fault-tolerance techniques for three-phase voltage source inverters,” IEEE Trans. Ind. Electron., Vol. 61, No. 10, pp. 5192-5202, Oct. 2014.

17.

J.-C. Lee, T.-J. Kim, D.-W. Kang, and D.-S. Hyun, "A control method for improvement of reliability in fault tolerant NPC inverter system," in Proc. IEEE Power Electron. Specialists Conf., pp. 1-5, 2006.

18.

F. Richardeau and T. T. L. Pham, “Reliability calculation of multilevel converters: Theory and applications,” IEEE Trans. Ind. Electron., Vol. 60, No. 10, pp. 4225-4233, Oct. 2013.

19.

M. Arifujjaman, “Reliability comparison of power electronic converters for grid-connected 1.5kW wind energy conversion system,” Renewable Energy, Vol. 57, pp. 348-357, Sep. 2013.

20.

X. Yu and A. M. Khambadkone, “Reliability analysis and cost optimization of parallel-inverter system,” IEEE Trans. Ind. Electron., Vol. 59, No. 10, pp. 3881-3889, Oct. 2012.

21.

E. G. Strangas, S. Aviyente, J. D. Neely, and S. S. H. Zaidi, “The effect of failure prognosis and mitigation on the reliability of permanent-magnet AC motor drives,” IEEE Trans. Ind. Electron., Vol. 60, No. 8, pp. 3519-3528, Aug. 2013.

22.

V. Esteve, J. Jordán, E. S. Kilders, E. J. Dede, E. Maset, J. B. Ejea, and A. Ferreres, “Improving the reliability of series resonant inverters for induction heating applications,” IEEE Trans. Ind. Electron., Vol. 61, No. 5, pp. 2564-2572, May 2014.

23.

A.E. Khosroshahi, M. Abapour, and M. sabahi, “Reliability evaluation of conventional and interleaved DC-DC boost converters,” IEEE Trans. Power Electron. Vol. 30, No. 10, pp. 5821-5828, Oct. 2015.

24.

D. J. Smith, Reliability, Maintainability and Risk 8th Edition: Practical Methods for Engineers including Reliability Centred Maintenance and Safety-Related Systems, Elsevier, Great Britain, Appendix 5: Failure Mode Percentages, 2011.

25.

Reliability prediction of electronic equipments, Relex Software Corp., Greensburg, PA, Rep. MIL-HDBK-217, 1990.