JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Effect of Bottom Electrode on Resistive Switching Voltages in Ag-Based Electrochemical Metallization Memory Device
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Effect of Bottom Electrode on Resistive Switching Voltages in Ag-Based Electrochemical Metallization Memory Device
Kim, Sungjun; Cho, Seongjae; Park, Byung-Gook;
  PDF(new window)
 Abstract
In this study, we fabricated Ag-based electrochemical metallization memory devices which is also called conductive-bridge random-access memory (CBRAM) in order to investigate the resistive switching behavior depending on the bottom electrode (BE). RRAM cells of two different layer configurations having and Si are studied for metal-insulator-metal (MIM) and metal-insulator-silicon (MIS) structures, respectively. Switching voltages including forming/set/reset are lower for MIM than for MIS structure. It is found that the workfunction different affects the performances.
 Keywords
Electrochemical metallization memory;conductive-bridge random-access memory;silicon nitride;metal-insulator-metal;metal-insulator-silicon;
 Language
English
 Cited by
 References
1.
R. Waser and M. Aono, "Nanoionics-based resistive switching memories," Nat. Mater., vol. 6, no. 11, pp. 833-840, Nov. 2011.

2.
H. Zhang, L. Liu, B. Gao, Y. Qiu, X. Liu, J. Lu, R. Han, J. Kang, and B. Yu, "Gd-doping effect on performance of $HfO_2$ based resistive switching memory devices using implantation approach," Appl. Phys. Lett., vol. 98, no. 4, pp. 042105-1-042105-3, Jan. 2011. crossref(new window)

3.
H.-D. Kim, M. J. Yun, and S. Kim, "All ITO-Based Trasparent Resistive Switching Random Access Memory Using Oxygen Doping Method," J. Alloy. Compd., vol. 653, pp. 534-538, Dec. 2015. crossref(new window)

4.
H.-D. Kim, M. J. Yun, and T. G. Kim, "Formingfree bipolar resistive switching in nonstoichiometric ceria films," Phys. Status Solidi. R., vol. 9, no. 4, pp. 264-268, Mar. 2015. crossref(new window)

5.
S. Kim, S. Jung, and B.-G. Park, "Investigation of bipolar resistive switching characteristics in $Si_3N_4$-based RRAM with metal-insulator-silicon structure," Int. J. Nanotechnol., vol. 11, no. 1-4, pp. 126-134, Mar. 2014. crossref(new window)

6.
S. Kim, S. Jung, M.-H. Kim, S. Cho, and B.-G. Park, "Resistive switching characteristics of $Si_3N_4$-based resistive-switching random-access memory cell with tunnel barrier for high density integration and low-power applications," Appl. Phys. Lett., vol. 106, no. 21, pp. 212106-1-212106-4, May. 2015. crossref(new window)

7.
S. Kim, S. Cho, K.-C. Ryoo, and B.-G. Park, "Resistive switching characteristics of integrated polycrystalline hafnium oxide based one transistor and one resistor devices fabricated by atomic vapor deposition methods," J. Vac. Sci. Technol. B, vol. 33, no. 6, pp. 062201-1-052204-6, Nov. 2015. crossref(new window)

8.
K. Kim, K. Lee, K.-H. Lee, Y.-K. Park, and W. Y. Choi, "A Finite Element Model for Bipolar Resistive Random Access Memory," J. Semicod. Tech. Sci., vol. 14, no. 3, pp. 268-271, Jun. 2014. crossref(new window)

9.
S. Kim, S. Jung, M.-H. Kim, S. Cho, and B.-G. Park, "Resistive switching characteristics of silicon nitride-based RRAM depending on top electrode metals," IEICE Trans. Electron., vol. E98-C, No. 5, pp. 429-432, May. 2015. crossref(new window)

10.
S. Kim, S. Jung, M.-H. Kim, S. Cho, and B.-G. Park, "Gradual bipolar resistive switching in Ni/$Si_3N_4/n^+-Si$ resistive-switching memory device for high-density integration and low-power applications," Solid-State Electron., vol. 114, pp. 94-97, Dec. 2015. crossref(new window)

11.
H.-D. Kim, M. Yun, and S. Kim, "Self-rectifying resistive switching behavior observed in $Si_3N_4$-based resistive random access memory devices," J. Alloy. Compd., vol. 651, pp. 340-343, Dec. 2015. crossref(new window)

12.
D. Walczyk, Ch. Walczyka, T. Schroedera, T. Bertauda, M. Sowińskaa, M. Lukosiusa, M. Fraschkea, B. Tillacka, and Ch. Wengera, "Resistive switching characteristics of CMOS embedded $HfO_2$-based 1T1R cells," Microelectron Eng., vol. 88, no. 7, pp. 1133-1135, Jul. 2011. crossref(new window)

13.
H.-D. Kim, F. Crupi, M. Lukosius, A. Trusch, C. Walczyk, and C. Wenger, "Resistive switching characteristics of integrated polycrystalline hafnium oxide based one transistor and one resistor devices fabricated by atomic vapor deposition methods," J. Vac. Sci. Technol. B, vol. 33, no. 5, pp. 052204-1-052204-5, Aug. 2015. crossref(new window)

14.
Y. Kim, J. Y. Seo, S.-H Lee, and B.-G. Park, "A new programming method to alleviate the program speed variation in three-dimensional stacked array NAND flash memory," J. Semicod. Tech. Sci., vol. 14, no. 5, pp. 566-571, Oct. 2014. crossref(new window)

15.
W. Kwon, I. J. Park, and C. Shin, "Highly Scalable NAND Flash Memory Cell Design Embracing Backside Charge Storage," J. Semicond. Technol. Sci., vol. 15, no. 2, pp. 286-291, Apr. 2015. crossref(new window)

16.
R. Dong, D. S. Lee, W. F. Xiang, S. J. Oh, D. J. Seong, S. H. Heo, H. J. Choi, M. J. Kwon, S. N. Seo, M. B. Pyun, M. Hasan and H. Hwang, "Reproducible hysteresis and resistive switching in metal-$Cu_xO$-metal heterostructures," Appl. Phys. Lett., vol. 90, no. 4, pp. 042107-1-042107-3, Jan. 2007. crossref(new window)

17.
Q. Liu. W. Guan, S. Long, R Jia, and M. Liu, "Resistive switching memory effect of $ZrO_2$ films with $Zr^+$ implanted," Appl. Phys. Lett., vol. 92, no. 1, pp. 012117-1-012117-3, May. 2008. crossref(new window)

18.
S. Yu and, H.-S. P. Wong "Compact Modeling of Conducting-Bridge Random-Access Memory (CBRAM)," IEEE Trans. Electron. Dev., vol. 58, no. 5, pp.1352-1360, May. 2011. crossref(new window)

19.
S.-J. Choi, J.-H. Lee, H.-J. Bae, W.-Y. Yang, T.-W. Kim, and K.-H. Kim, "Improvement of CBRAM Resistance Window by Scaling Down Electrode Size in Pure-GeTe Film," IEEE Electron. Dev. Lett., vol. 30, no. 2, pp. 120-122, Feb. 2009. crossref(new window)

20.
A. Pradel, N. Frolet, M. Ramonda, A. Piarristeguy, and M. Ribes "Bipolar resistance switching in chalcogenide materials," Phys. Status Solidi. R., vol. 208, no. 10, pp. 2303-2308, Oct. 2011. crossref(new window)

21.
Y. C. Yang, F. Pan, F. Zeng, and M. Liu, "Switching mechanism transition induced by annealing treatment in nonvolatile Cu/ZnO/Cu/ZnO/Pt resistive memory: From carrier trapping/detrapping to electrochemical metallization," J. Appl. Phys., vol. 106, no. 12, pp. 123705-1-123705-7, Dec. 2009. crossref(new window)

22.
J.-K. Lee, S. Jung, J. Park, S.-W. Chung, J. S. Roh, S.-J. Hong, I. H. Cho, H.-I. Kwon, C. H. Park, B.-G. Park, and J.-H. Lee, "Accurate analysis of conduction and resistive-switching mechanisms in double-layered resistive-switching memory devices," Appl. Phys. Lett., vol. 101, no. 10, pp. 103506-1-103506-3, Sep. 2012. crossref(new window)

23.
J. Molina, R. Valderrama, C. Zuniga, P. Rosales, W. Calleja, A. Torres, J. D. Hidalga, and E. Gutierrez, "Influence of the surface roughness of the bottom electrode on the resistive-switching characteristics of $Al/Al_2O_3/Al$ and $Al/Al_2O_3/W$ structures fabricated on glass at $300^{\circ}C$," Microelectron. Reliab., vol. 54, no. 12, pp. 2747-2753, Dec. 2014. crossref(new window)