JOURNAL BROWSE
Search
Advanced SearchSearch Tips
LARGE EDDY SIMULATION OF TURBULENT CHANNEL FLOW USING ALGEBRAIC WALL MODEL
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
LARGE EDDY SIMULATION OF TURBULENT CHANNEL FLOW USING ALGEBRAIC WALL MODEL
MALLIK, MUHAMMAD SAIFUL ISLAM; UDDIN, MD. ASHRAF;
  PDF(new window)
 Abstract
A large eddy simulation (LES) of a turbulent channel flow is performed by using the third order low-storage Runge-Kutta method in time and second order finite difference formulation in space with staggered grid at a Reynolds number, $Re_{\tau}
 Keywords
Large Eddy simulation;Turbulent channel flow;Algebraic wall model;
 Language
English
 Cited by
 References
1.
J. Kim, P. Moin, and R. Moser, Turbulence statistics in fully developed channel flow at low Reynolds number, Journal of Fluid Mechanics, 177 (1987), 133-166. crossref(new window)

2.
R.D. Moser, J. Kim, and N.N. Mansour, Direct numrical simulation of turbulent channel flow up to $Re_{\tau}$ = 590, Physics of Fluids, 11(4) (1999), 943-945. crossref(new window)

3.
P. Moin and J. Kim, Numerical Investigation of Turbulent Channel Flow, Journal of Fluid Mechanics, 118 (1982), 341-377. crossref(new window)

4.
F. Yang, H.Q. Zhang, C.K. Chan, and X.L. Wang, Large Eddy Simulation of Turbulent Channel Flow with 3D Roughness Using a Roughness Element Model, Chinese Physics Letters, 25(1) (2008), 191-194. crossref(new window)

5.
M.A. Uddin and M.S.I. Mallik, Large Eddy Simulation of Turbulent Channel Flow using Smagorinsky Model and Effects of Smagorinsky Constants, British Journal of Mathematics & Computer Science, 7(5) (2015), 375-390. crossref(new window)

6.
M.S.I. Mallik, M.A. Uddin, and M.A. Meah, Large Eddy Simulation of Turbulent Channel Flow at $Re_{\tau}$ = 590, IOSR - Journal of Mathematics, 10(6) (2014), 41-50.

7.
Z. Xie, B. Lin, and R.A. Falconer, Large-eddy simulation of the turbulent structure in compound open-channel flows, Advances in Water Resources, 53 (2013), 66-75. crossref(new window)

8.
G. GrOtzbach, Direct numerical and large eddy simulation of turbulent channel flows. Encyclopedia of Fluid Mechanics, Cheremisinoff, N. P. ed., Gulf Pub. Co., Chap. 34, (1987), 1337-1391.

9.
H. Werner and H. Wengle, Large eddy simulation of turbulent flow around a cube in a plane channel, Selected Papers from the 8th Symposium on Turbulent Shear Flows, ed. F Durst, R Friedrich, BE Launder, U Schumann, JH Whitelaw, Springer, New York (1993).

10.
U. Piomelli and E. Balaras, Wall-Layer Models for Large-Eddy Simulations, Annual Review of Fluid Mechanics, 34 (2002), 349-374. crossref(new window)

11.
G. Kalitzin, G. Medic, G. Iaccarino, and P. Durbin, Near-wall behavior of RANS turbulence models and implications for wall functions, Journal of Computational Physics, 204 (2005), 265-291. crossref(new window)

12.
U. Schumann, Subgrid scale model for finite difference simulations of turbulent flows in plane channels and annuli, Journal of Computational Physics, 18 (1975), 376-404. crossref(new window)

13.
U. Piomelli, J. Ferziger, P. Moin, and J. Kim, New approximate boundary conditions for large-eddy simulations of wall-bounded flows, Physics of Fluids, 1 (1989), 1061-1068. crossref(new window)

14.
D.B. Spalding, A single formula for the law of the wall, Journal of Applied Mechanics, 28, Ser. E (1961), 455-458. crossref(new window)

15.
F.E. Ham, F.S. Lien, and A.B. Strong, A Fully Conservative Second-Order Finite Difference Scheme for Incompressible Flow on Nonuniform Grids, Journal of Computational Physics, 177 (2002), 117-133. crossref(new window)

16.
Y. Morinishi, Skew-symmetric form of convective terms and fully conservative finite difference schemes for variable density low-Mach number flows, Journal of Computational Physics, 229 (2010), 276-300. crossref(new window)

17.
Y.M. Han, J.S. Cho, and H.S. Kang, Analysis of a one-dimensional fin using the analytic method and the finite difference method, Journal of Korean Society for Industrial and Applied Mathematics, 9(1) (2005), 91-98.

18.
M.Y. Kim and Y.K. Choi, Efficient Numerical Methods for the KDV Equation, Journal of Korean Society for Industrial and Applied Mathematics, 15(4) (2011), 291-306.

19.
B. Sanderse and B. Koren, Accuracy analysis of explicit Runge-Kutta methods applied to the incompressible Navier-Stokes equations, Journal of Computational Physics, 231 (2012), 3041-3063. crossref(new window)

20.
J.H. Williamson, Low-storage Runge-Kutta schemes, Journal of Computational Physics, 35 (1980), 48-56. crossref(new window)

21.
P. Sagaut, Large Eddy Simulation for Incompressible Flows: An Introduction, Springer-Verlag, Berlin Heidelberg, (2001).

22.
C.A. Kennedy, M.H. Carpenter, and R.M. Lewis, Low-storage, explicit Runge-Kutta schemes for the compressible Navier-Stokes equations, Applied Numerical Mathematics, 35 (2000), 177-219. crossref(new window)

23.
D.B. Johnson, P.E. Raad, and S. Chen, Simulation of impacts of fluid free surfaces with solid boundaries, International Journal for Numerical Methods in Fluids, 19 (1994), 153-176. crossref(new window)

24.
H.K. Versteeg and W. Malalasekera, An introduction to computational fluid dynamics, Longman Group Limited, England, (1995).

25.
J.D. Anderson, Computational Fluid Dynamics, McGraw-Hill, New York, (1995).