JOURNAL BROWSE
Search
Advanced SearchSearch Tips
COMPARISON OF NUMERICAL METHODS FOR TERNARY FLUID FLOWS: IMMERSED BOUNDARY, LEVEL-SET, AND PHASE-FIELD METHODS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
COMPARISON OF NUMERICAL METHODS FOR TERNARY FLUID FLOWS: IMMERSED BOUNDARY, LEVEL-SET, AND PHASE-FIELD METHODS
LEE, SEUNGGYU; JEONG, DARAE; CHOI, YONGHO; KIM, JUNSEOK;
  PDF(new window)
 Abstract
This paper reviews and compares three different methods for modeling incompressible and immiscible ternary fluid flows: the immersed boundary, level set, and phase-field methods. The immersed boundary method represents the moving interface by tracking the Lagrangian particles. In the level set method, an interface is defined implicitly by using the signed distance function, and its evolution is governed by a transport equation. In the phase-field method, the advective Cahn-Hilliard equation is used as the evolution equation, and its order parameter also implicitly defines an interface. Each method has its merits and demerits. We perform the several simulations under different conditions to examine the merits and demerits of each method. Based on the results, we determine the most suitable method depending on the specific modeling needs of different situations.
 Keywords
ternary fluid flows;continuum surface force;immersed boundary method;level set method;phase-field method;Navier-Stokes equation;
 Language
English
 Cited by
 References
1.
J.M. Park and P.D. Anderson, A ternary model for double-emulsion formation in a capillary microfluidic device, Lab Chip, 12(15) (2012), 2672-2677. crossref(new window)

2.
L. Szalmas, Viscous velocity, diffusion and thermal slip coefficients for ternary gas mixtures, Euro. J. Mech. B-Fluid., 53 (2015), 264-271. crossref(new window)

3.
A.S. Utada, E. Lorenceau, D.R. Link, P.D. Kaplan, and H.A. Stone, Weitz DA. Monodisperse double emulsions generated from a microcapillary device, Science, 308(5721) (2005), 537-541. crossref(new window)

4.
C.S. Peskin, Numerical analysis of blood flow in the heart, J. Comput. Phys., 25(3) (1977), 220-252. crossref(new window)

5.
H.C. Kan, H.S. Udaykumar, W. Shyy, and R. Tran-Son-Tay, Hydrodynamics of a compound drop with application to leukocyte modeling, Phys. Fluid., 10(4) (1998), 760-774. crossref(new window)

6.
H.C. Kan, W. Shyy, H.S. Udaykumar, P. Vigneron, and R. Tran-Son-Tay, Effects of nuclues on leukocyte recovery, Ann. Biomed. Eng., 27 (1999), 648-655. crossref(new window)

7.
R. Gautier, S. Laizet, and E. Lamballais, A DNS study of jet control with microjets using an immersed boundary method, Int. J. Comput. Fluid Dyn., 28 (2014), 393-410. crossref(new window)

8.
P. Ouro, L. Cea, L. Ramirez, and X. Nogueira, An immersed boundary method for unstructured meshes in depth averaged shallow water models, Int. J. Numer. M. Fluid., DOI: 10.1002/fld.4201, 2015. crossref(new window)

9.
C. Yan, W.X. Huang, G.W. Cui, C. Xu, and Z.S. Zhang, A ghost-cell immersed boundary method for large eddy simulation of flows in complex geometries, Int. J. Comput. Fluid Dyn., 29 (2015), 12-25. crossref(new window)

10.
H. Hua, J. Shin, and J. Kim, Dynamics of a compound droplet in shear flow, Int. J. Heat Fluid Fl., 50 (2014), 63-71. crossref(new window)

11.
Y. Kim, M.C. Lai, and C.S. Peskin, Numerical simulations of two-dimensional foam by the immersed boundary method, J. Comput. Phys., 229(13) (2010) 5194-5207. crossref(new window)

12.
Y. Kim and Y. Seol, Numerical simulations of two-dimensional wet foam by the immersed boundary method, Comput. Struct., 122 (201), 259-269. crossref(new window)

13.
Y. Kim, M.C. Lai, C.S. Peskin, and Y. Seol, Numerical simulations of three-dimenisonal foam by the immersed boundary method, J. Comput. Phys., 269 (2014), 1-21. crossref(new window)

14.
S. Osher and J.A. Sethian, Fronts propagating with curvature dependent speed: algorithms based on Hamilton-Jacobi formulations, J. Comput. Phys., 79(1) (1988), 12-49. crossref(new window)

15.
S. Osher and R.P. Fedkiw RP, Level Set Methods and Dynamic Implicit Surfaces. Springer-Verlag, New York, 2003.

16.
F. Raees, D.R. Heul, and C. Vuik, A mass-conserving level-set method for simulation of multiphase flow in geometrically complicated domains, Int. J. Numer. M. Fluid, DOI:10.1002/fld.4188, 2005. crossref(new window)

17.
J.A. Sethian and P. Smereka, Level set methods for fluid interfaces, Ann. Rev. Fluid Mech., 35 (2003), 341-372. crossref(new window)

18.
B. Merriman, J.K. Bence, and S. Osher, Motion of multiple junctions a level set approach, J. Comput. Phys., 12(2) (1994), 334-363.

19.
K.A. Smith, F.J. Solis, and D.L. Chopp, A projection method for motion of triple junctions by level sets, Interface. Free Bound., 4 (2002) 263-276.

20.
S. Aland and F. Chen, An efficient and energy stable shceme for a phase-field model for the moving contact line problem, Int. J. Numer. M. Fluid., DOI: 10.1002/fld.4200, 2015. crossref(new window)

21.
J.W. Cahn and J.E. Hilliard, Free energy of a nonuniform system. I. interfacial free energy, J. Chem. Phys. 28(2) (1958), 258-267. crossref(new window)

22.
D. Anderson, G.B. McFadden, and A.A. Wheeler, Diffuse interface methods in fluid mechanics, Ann. Rev. Fluid Mech., 30(1) (1998) 139-165. crossref(new window)

23.
D. de Fontaine, A computer simulation of the evolution of coherent composition variations in solid solutions, Ph.D. Thesis, Northwestern University, USA, 1967.

24.
D. Eyre, Systems of Cahn-Hilliard equations, SIAM J. Appl. Math., 53 (1993), 1686-1712. crossref(new window)

25.
J.F. Blowey, M. Copetti, and C.M. Elliott, Numerical analysis of a model for phase separation of a multi-component alloy, IMA J. Numer. Anal. 16 (1996), 111-139. crossref(new window)

26.
F. Boyer, C. Lapuerta, S. Minjeaud, B. Piar, and M. Quintard, Cahn-Hilliard/Navier-Stokes model for the simulation of three-phase flows, Transport Porous Med., 82(3) (2010), 463-483. crossref(new window)

27.
M. Copetti, Numerical experiments of phase separation in ternary mixtures, Math. Comput. Simul. 52(1) (2000), 41-51. crossref(new window)

28.
J.S. Kim, Phase field computations for ternary fluid flows, Comput. M. Appl. Mech. Eng., 196 (2007), 4779-4788. crossref(new window)

29.
J.S. Kim, Phase-field models for multi-component fluid flow Commun. Comput. Phys. 12 (2012) 613-661. crossref(new window)

30.
H.G. Lee and J. Kim, Two-dimensional Kelvin-Helmholtz instabilities of multi-component fluids, Euro. J. Mech. B-Fluid., 49 (2015), 77-88. crossref(new window)

31.
T.Y. Hou, Z. Li, S. Osher, and H. Zhao, A hybrid method for moving interface problems with application to the Hele-Shaw flow, J. Comput. Phys. 132(2) (1997), 236-252.

32.
F. Losasso, T. Shinar, A. Selle, and R. Fedkiw, Multiple interacting liquids, ACM T. Graphic., 25(3) (2006), 812-819. crossref(new window)

33.
T. Oda, N. Satofuka, and H. Nishida, Numerical analysis of particle behavior penetrating into liquid by level set method, in: S.W. Armfield, P. Morgan (Eds.), Compututional Fluid Dynamics 2002, Springer, Berlin Heidelberg, 2003, pp. 529-534.

34.
K.A. Smith, F.J. Solis, L. Tao, K. Thornton, and M.O. De La Cruz, Domain growth in ternary fluids: a level set approach, Phys. Rev. Lett., 84 (2000), 91-94. crossref(new window)

35.
J.S. Kim and J. Lowengrub, Phase field modeling and simulation of three-phase flows, Interface. Free Bound., 7 (2005), 435-466.

36.
M. Sussman, P. Smereka, and S. Osher, A level set approach for computing solutions to incompressible two-phase flow, J. Comput. Phys., 114(1) (1994), 146-159. crossref(new window)

37.
H.G. Lee and J. Kim, A second-order accurate non-linear differnce scheme for the Ncomponent Cahn-Hilliard system, Physica A, 387(19) (2008), 4787-4799. crossref(new window)

38.
D. Jacqmin, Contact-line dynamics of a diffuse fluid interface, J. Fluid Mech., 402 (2000), 57-88. crossref(new window)

39.
H. Hua, J. Shin, and J. Kim, Level set, phase-field, and immersed boundary methods for two-phase fluid flows, J. Fluid. Eng., 136 (2014), 021301.

40.
J.U. Brackbill, D.B. Kothe, and C. Zemach, A continuum method for modelling surface tension, J. Comput. Phys., 100(2) (1992), 335-354. crossref(new window)

41.
Y. Li, A. Yun, and J. Kim, An immersed boundary method for simulating a single axisymmetric cell growth and division, J. Math. Bio., 65(4) (2012), 653-675. crossref(new window)

42.
F. Boyer and C. Lapuerta, Study of a three component Cahn-Hilliard flow model, ESAIMMath. Model. Numer. Anal., 40(4) (2006), 653-687. crossref(new window)

43.
A.J. Chorin, Numerical solution of the Navier-Stokes equations, Math. Comput., 22(104) (1968), 745-762. crossref(new window)

44.
Y. Li, A. Yun, D. Lee, J. Shin, D. Jeong, and J. Kim, Three-dimensional Volum-econserving immersed boundary model for two-phase fluid flows, Compu. Meth. Appl. Mech. Eng., 257 (2013), 36-46. crossref(new window)

45.
H. Hua, Y. Li, J. Shin, H. Song, and J. Kim, Effect of confinement on droplet deformation in shear flow, Int. J. Comput. Fluid Dyn., 27 (2013), 317-331. crossref(new window)

46.
C.W. Shu, Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws, Springer, Berlin Heidelberg, 1998.

47.
H.G. Lee, J.W. Choi, and J. Kim, A practically unconditionally gradient stable scheme for the N-component Cahn-Hilliard system, Physica A, 391 (2012), 1009-1019. crossref(new window)

48.
J.J. Eggleston, G.B. McFadden, and P.W. Voorhees, A phase-field model for highly anisotropic interfacial energy, Physica D, 150 (2001), 91-103. crossref(new window)

49.
J. Kim, S. Lee, and Y. Choi, A conservative Allen-Cahn equation with a space-time dependent Lagrange multiplier, Int. J. Eng. Sci., 84 (2014), 11-17. crossref(new window)