ARITHMETIC AVERAGE ASIAN OPTIONS WITH STOCHASTIC ELASTICITY OF VARIANCE

- Journal title : Journal of the Korean Society for Industrial and Applied Mathematics
- Volume 20, Issue 2, 2016, pp.123-135
- Publisher : The Korean Society for Industrial and Applied Mathematics
- DOI : 10.12941/jksiam.2016.20.123

Title & Authors

ARITHMETIC AVERAGE ASIAN OPTIONS WITH STOCHASTIC ELASTICITY OF VARIANCE

JANG, KYU-HWAN; LEE, MIN-KU;

JANG, KYU-HWAN; LEE, MIN-KU;

Abstract

This article deals with the pricing of Asian options under a constant elasticity of variance (CEV) model as well as a stochastic elasticity of variance (SEV) model. The CEV and SEV models are underlying asset price models proposed to overcome shortcomings of the constant volatility model. In particular, the SEV model is attractive because it can characterize the feature of volatility in risky situation such as the global financial crisis both quantitatively and qualitatively. We use an asymptotic expansion method to approximate the no-arbitrage price of an arithmetic average Asian option under both CEV and SEV models. Subsequently, the zero and non-zero constant leverage effects as well as stochastic leverage effects are compared with each other. Lastly, we investigate the SEV correction effects to the CEV model for the price of Asian options.

Keywords

Asian option;Stochastic volatility;Constant elasticity of variance;Stochastic elasticity of variance;

Language

English

References

1.

F. Black and M. Scholes, The pricing of options andcorporate liabilities, J. Polit. Econ., 81 (1973), 637-654.

2.

P. Wilmott, Paul Wilmott on Quantitative Finance, John Wiley and Sons (2006).

3.

H. Geman and M. Yor, Bessel processes, Asian option and perpetuities, Math. Financ., 3 (1993), 349-375.

4.

V. Linetsk, Spectral expansions for Asian (average price) options, Oper. Res., 52(6) (2004), 856-867.

5.

A.G.Z. Kemna and A.C.F. Vorst, A pricing method for options based on average asset values, J. Bank. Financ., 14(1) (1990), 113-129.

6.

J.E. Ingersoll, Theory of Financial Decision Making, Rowman and Littlefield, Savage, Md (1987).

8.

J. Vecer, Unified pricing of Asian options, Risk, 15(6) (2002), 113-116.

9.

J. Cox, Notes on option pricing I: Constant elasticity of variance diffusions, (1975) Working paper, Stanford University (Reprinted in Portf, J., 1996, manage 22, 15-17).

10.

S.L. Heston, Closed-form solution for options with stochastic volatility with applications to bond and currency options, Rev. Financ. Stud., 6 (1993), 327-343.

11.

J.P. Fouque, G. Papanicolaou, and R. Sircar, Asymptotics of a two-scale stochastic volatility model, Equations aux derivees partielles et applications, in honour of Jacques-Louis Lions, Gauthier-Villars, Paris, (1998), 517-526.

12.

P. Carr, H. Geman, D. Madam, and M. Yor, Stochastic volatility for Levy processes, Math. Financ., 13(3) (2003), 345-382.

13.

B. Peng, F. Peng, Pricing arithmetic Asian options under the CEV process, J. Econ. Financ. Adm. Sci., 15(29) (2010), 7-13.

14.

J.P. Fouque and C.H. Han, Pricing Asian options with stochastic volatility, Quant. Financ., 3(5) (2003), 352-362.

15.

D. Lemmens, L.Z. Liang, J. Tempere, and A. De Schepper, Pricing bounds for discrete arithmetic Asian options under Levy models, Physica A, 389(22) (2010), 5193-5207.

16.

J.H. Kim, J.W. Lee, S.P. Zhu, and S.H. Yu, A multiscale correction to the Black-Scholes formula, Appl. Stoch. Model. Bus. 30(6) (2014), 753-765.

17.

J.H. Yoon, J.H. Kim, and S.Y. Choi, Multiscale analysis of a perpetual American option with the stochastic elasticity of variance, Appl. Math. Lett., 26 (2013), 670-675.

18.

S.J. Yang, M.K. Lee, and J.H. Kim, Portfolio optimization under the stochastic elasticity of variance, Stoch. Dynam., 14(03) (2014), 1350024.

19.

J.H. Kim, J.H. Yoon, J. Lee, and S.Y. Choi, On the stochastic elasticity of variance diffusions, Econ. Model., 51 (2015), 263-268.

20.

B. Oksendal, Stochastic Differential Equations. Springer, New York (2003).

21.

J.P. Fouque, G. Papanicolaou, R. Sircar, and K. Solna, Multiscale Stochastic Volatility for Equity, Interest Rate and Credit Derivatives, Cambridge University Press, Cambridge (2011).

22.

A.G. Ramm, A simple proof of the Fredholm alternative and a characterization of the Fredholm operators, Math. Assoc. America, 108 (2001), 855-860.

23.

J.P. Fouque, G. Papanicolaou, R. Sircar, and K. Solna, Singular perturbations in option pricing, SIAM J. Appl. Math., 62(5) (2003), 1648-1665.

24.

L.B.G. Andersen and V.V. Piterbarg, Moment explosions in stochastic volatility models, Financ. Stoch., 11 (2007), 29-50.