JOURNAL BROWSE
Search
Advanced SearchSearch Tips
ARITHMETIC AVERAGE ASIAN OPTIONS WITH STOCHASTIC ELASTICITY OF VARIANCE
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
ARITHMETIC AVERAGE ASIAN OPTIONS WITH STOCHASTIC ELASTICITY OF VARIANCE
JANG, KYU-HWAN; LEE, MIN-KU;
  PDF(new window)
 Abstract
This article deals with the pricing of Asian options under a constant elasticity of variance (CEV) model as well as a stochastic elasticity of variance (SEV) model. The CEV and SEV models are underlying asset price models proposed to overcome shortcomings of the constant volatility model. In particular, the SEV model is attractive because it can characterize the feature of volatility in risky situation such as the global financial crisis both quantitatively and qualitatively. We use an asymptotic expansion method to approximate the no-arbitrage price of an arithmetic average Asian option under both CEV and SEV models. Subsequently, the zero and non-zero constant leverage effects as well as stochastic leverage effects are compared with each other. Lastly, we investigate the SEV correction effects to the CEV model for the price of Asian options.
 Keywords
Asian option;Stochastic volatility;Constant elasticity of variance;Stochastic elasticity of variance;
 Language
English
 Cited by
 References
1.
F. Black and M. Scholes, The pricing of options andcorporate liabilities, J. Polit. Econ., 81 (1973), 637-654. crossref(new window)

2.
P. Wilmott, Paul Wilmott on Quantitative Finance, John Wiley and Sons (2006).

3.
H. Geman and M. Yor, Bessel processes, Asian option and perpetuities, Math. Financ., 3 (1993), 349-375. crossref(new window)

4.
V. Linetsk, Spectral expansions for Asian (average price) options, Oper. Res., 52(6) (2004), 856-867. crossref(new window)

5.
A.G.Z. Kemna and A.C.F. Vorst, A pricing method for options based on average asset values, J. Bank. Financ., 14(1) (1990), 113-129. crossref(new window)

6.
J.E. Ingersoll, Theory of Financial Decision Making, Rowman and Littlefield, Savage, Md (1987).

7.
L.C.G. Rogers and Z. Shi, The value of an Asian option, J. Appl. Prob., 32(4) (1995), 1077-1088. crossref(new window)

8.
J. Vecer, Unified pricing of Asian options, Risk, 15(6) (2002), 113-116.

9.
J. Cox, Notes on option pricing I: Constant elasticity of variance diffusions, (1975) Working paper, Stanford University (Reprinted in Portf, J., 1996, manage 22, 15-17).

10.
S.L. Heston, Closed-form solution for options with stochastic volatility with applications to bond and currency options, Rev. Financ. Stud., 6 (1993), 327-343. crossref(new window)

11.
J.P. Fouque, G. Papanicolaou, and R. Sircar, Asymptotics of a two-scale stochastic volatility model, Equations aux derivees partielles et applications, in honour of Jacques-Louis Lions, Gauthier-Villars, Paris, (1998), 517-526.

12.
P. Carr, H. Geman, D. Madam, and M. Yor, Stochastic volatility for Levy processes, Math. Financ., 13(3) (2003), 345-382. crossref(new window)

13.
B. Peng, F. Peng, Pricing arithmetic Asian options under the CEV process, J. Econ. Financ. Adm. Sci., 15(29) (2010), 7-13.

14.
J.P. Fouque and C.H. Han, Pricing Asian options with stochastic volatility, Quant. Financ., 3(5) (2003), 352-362.

15.
D. Lemmens, L.Z. Liang, J. Tempere, and A. De Schepper, Pricing bounds for discrete arithmetic Asian options under Levy models, Physica A, 389(22) (2010), 5193-5207. crossref(new window)

16.
J.H. Kim, J.W. Lee, S.P. Zhu, and S.H. Yu, A multiscale correction to the Black-Scholes formula, Appl. Stoch. Model. Bus. 30(6) (2014), 753-765. crossref(new window)

17.
J.H. Yoon, J.H. Kim, and S.Y. Choi, Multiscale analysis of a perpetual American option with the stochastic elasticity of variance, Appl. Math. Lett., 26 (2013), 670-675. crossref(new window)

18.
S.J. Yang, M.K. Lee, and J.H. Kim, Portfolio optimization under the stochastic elasticity of variance, Stoch. Dynam., 14(03) (2014), 1350024. crossref(new window)

19.
J.H. Kim, J.H. Yoon, J. Lee, and S.Y. Choi, On the stochastic elasticity of variance diffusions, Econ. Model., 51 (2015), 263-268. crossref(new window)

20.
B. Oksendal, Stochastic Differential Equations. Springer, New York (2003).

21.
J.P. Fouque, G. Papanicolaou, R. Sircar, and K. Solna, Multiscale Stochastic Volatility for Equity, Interest Rate and Credit Derivatives, Cambridge University Press, Cambridge (2011).

22.
A.G. Ramm, A simple proof of the Fredholm alternative and a characterization of the Fredholm operators, Math. Assoc. America, 108 (2001), 855-860.

23.
J.P. Fouque, G. Papanicolaou, R. Sircar, and K. Solna, Singular perturbations in option pricing, SIAM J. Appl. Math., 62(5) (2003), 1648-1665.

24.
L.B.G. Andersen and V.V. Piterbarg, Moment explosions in stochastic volatility models, Financ. Stoch., 11 (2007), 29-50.