JOURNAL BROWSE
Search
Advanced SearchSearch Tips
ROBUST A POSTERIORI ERROR ESTIMATOR FOR LOWEST-ORDER FINITE ELEMENT METHODS OF INTERFACE PROBLEMS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
ROBUST A POSTERIORI ERROR ESTIMATOR FOR LOWEST-ORDER FINITE ELEMENT METHODS OF INTERFACE PROBLEMS
KIM, KWANG-YEON;
  PDF(new window)
 Abstract
In this paper we analyze an a posteriori error estimator based on flux recovery for lowest-order finite element discretizations of elliptic interface problems. The flux recovery considered here is based on averaging the discrete normal fluxes and/or tangential derivatives at midpoints of edges with weight factors adapted to discontinuous coefficients. It is shown that the error estimator based on this flux recovery is equivalent to the error estimator of Bernardi and based on the standard edge residuals uniformly with respect to jumps of the coefficient between subdomains. Moreover, as a byproduct, we obtain slightly modified weight factors in the edge residual estimator which are expected to produce more accurate results.
 Keywords
a posteriori error estimator;finite element method;interface problem;flux recovery;
 Language
English
 Cited by
 References
1.
C. Bernardi and R. Verfurth, Adaptive finite element methods for elliptic equations with non-smooth coefficients, Numer. Math., 85 (2000), 579-608. crossref(new window)

2.
M. Petzoldt, A posteriori error estimators for elliptic equations with discontinuous coefficients, Adv. Comput. Math., 16 (2002), 47-75. crossref(new window)

3.
C. Carstensen and R. Verfurth, Edge residuals dominate a posteriori error estimates for low order finite element methods, SIAM J. Numer. Anal., 36 (1999), 1571-1587. crossref(new window)

4.
Z. Cai and S. Zhang, Recovery-based error estimator for interface problems: conforming linear elements, SIAM J. Numer. Anal., 47 (2009), 2132-2156. crossref(new window)

5.
Z. Cai and S. Zhang, Recovery-based error estimators for interface problems: mixed and nonconforming finite elements, SIAM J. Numer. Anal., 48 (2010), 30-52. crossref(new window)

6.
O. C. Zienkiewicz and J. Z. Zhu, A simple error estimator and adaptive procedure for practical engineering analysis, Internat. J. Numer. Methods Engrg., 24 (1987), 337-357. crossref(new window)

7.
C. Carstensen and S. Bartels, Each averaging technique yields reliable a posteriori error control in FEM on unstructured grids. Part I: Low order conforming, nonconforming, and mixed FEM, Math. Comp., 71 (2002), 945-969. crossref(new window)

8.
G. Goodsell and J. R. Whiteman, A unified treatment of superconvergent recovered gradient functions for piecewise linear finite element approximations, Internat. J. Numer. Methods Engrg., 27 (1989), 469-481. crossref(new window)

9.
N. Levine, Superconvergent recovery of the gradient from piecewise linear finite-element approximations, IMA J. Numer. Anal., 5 (1985), 407-427. crossref(new window)

10.
J. H. Brandts, Superconvergence and a posteriori error estimation for triangular mixed finite elements, Numer. Math., 68 (1994), 311-324. crossref(new window)

11.
J. Hu and R. Ma, Superconvergence of both the Crouzeix-Raviart and Morley elements, Numer. Math., 132 (2016), 491-509. crossref(new window)

12.
K. Y. Kim, A posteriori error analysis for locally conservative mixed methods, Math. Comp., 76 (2007), 43-66. crossref(new window)

13.
B. I. Wohlmuth and R. H. W. Hoppe, A comparison of a posteriori error estimators for mixed finite element discretizations by Raviart-Thomas elements, Math. Comp., 68 (1999), 1347-1378. crossref(new window)

14.
R. B. Kellogg, On the Poisson equation with intersecting interfaces, Appl. Anal., 4 (1974), 101-129. crossref(new window)