JOURNAL BROWSE
Search
Advanced SearchSearch Tips
PATH AVERAGED OPTION VALUE CRITERIA FOR SELECTING BETTER OPTIONS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
PATH AVERAGED OPTION VALUE CRITERIA FOR SELECTING BETTER OPTIONS
KIM, JUNSEOK; YOO, MINHYUN; SON, HYEJU; LEE, SEUNGGYU; KIM, MYEONG-HYEON; CHOI, YONGHO; JEONG, DARAE; KIM, YOUNG ROCK;
  PDF(new window)
 Abstract
In this paper, we propose an optimal choice scheme to determine the best option among comparable options whose current expectations are all the same under the condition that an investor has a confidence in the future value realization of underlying assets. For this purpose, we use a path-averaged option as our base instrument in which we calculate the time discounted value along the path and divide it by the number of time steps for a given expected path. First, we consider three European call options such as vanilla, cash-or-nothing, and asset-or-nothing as our comparable set of choice schemes. Next, we perform the experiments using historical data to prove the usefulness of our proposed scheme. The test suggests that the path-averaged option value is a good guideline to choose an optimal option.
 Keywords
Black-Scholes equations;European options;path-averaged option value;
 Language
English
 Cited by
 References
1.
F. Black and M. Scholes, The pricing of options and corporate liabilities, J. Polit. Econ., 81 (1973), 637-659. crossref(new window)

2.
C. Wang, S. Zhou, and J. Yang, The pricing of vulnerable options in a fractional Brownian motion environment, Discrete Dyn. Nat. Soc., 2015 (2015), 579213.

3.
D.J. Duffy, Finite Difference Methods in Financial Engineering, John Wiley & Sons, New York, NY, USA, (2006).

4.
H. Han and X. Wu, A fast numerical method for the Black-Scholes equation of American options, SIAM J. Numer. Anal., 41(6) (2003), 2081-2095. crossref(new window)

5.
D. Jeong, T. Ha, M. Kim, J. Shin, I.H. Yoon, and J. Kim, An adaptive finite difference method using far-field boundary conditions for the Black-Scholes equation, B. Korean Math. Soc., 51(4) (2014), 1087-1100. crossref(new window)

6.
D. Jeong and J. Kim, A comparison study of ADI and operator splitting methods on option pricing models, J. Comput. Appl. Math., 247 (2013), 162-171. crossref(new window)

7.
D. Jeong, J. Kim, and I.S. Wee, An accurate and efficient numerical method for Black-Scholes equations, Commun. Korean Math. Soc., 24(4) (2009), 617-628. crossref(new window)

8.
D. Jeong, I.S.Wee, and J. Kim, An operator splitting method for pricing the ELS option, J. KSIAM, 14 (2010), 175-187.

9.
R. Seydel, Tools for Computational Finance, Springer, Berlin, Germany, (2003).

10.
D. Tavella and C. Randall, Pricing Financial Instruments: The Finite Difference Method, John Wiley & Sons, New York, NY, USA, (2000).

11.
J. Topper, Financial Engineering with Finite Elements, John Wiley & Sons, Chichester, UK, (2005).

12.
P. Wilmott, J. Dewynne, and S. Howison, Option Pricing: Mathematical Models and Computation, Oxford Financial Press, Oxford, UK, (1993).

13.
D. Jeong, S. Seo, H. Hwang, D. Lee, Y. Choi, and J. Kim, Accuracy, robustness, and efficiency of the linear boundary condition for the Black-Scholes equations, Discrete Dyn. Nat. Soc., 2015 (2015) 359028.

14.
Y. Achdou and N. Tchou, Variational analysis for the Black and Scholes equation with stochastic volatility, ESAIM-Math. Model. Num., 36)(3) (2002), 373-395. crossref(new window)

15.
A. Ern, S. Villeneuve, and A. Zanette, Adaptive finite element methods for local volatility European option pricing, Int. J. Theor. Appl. Financ., 7(6) (2004), 659-684. crossref(new window)

16.
N. Rambeerich, D.Y. Tangman, M.R. Lollchund, and M. Bhuruth, High-order computational methods for option valuation under multifactor models, Eur. J. Oper. Res., 224(1) (2013), 219-226. crossref(new window)

17.
P.A. Forsyth and K.R. Vetzal, Quadratic convergence for valuing American options using a penalty method, SIAM J. Sci. Comput., 23(6) (2002), 2095-2122. crossref(new window)

18.
S. Wang, A novel fitted finite volume method for the Black-Scholes equation governing option pricing, IMA J. Numer. Anal., 24(4) (2004), 699-720. crossref(new window)

19.
S. Wang, S. Zhang, and Z. Fang, A super convergent fitted finite volume method for Black-Scholes equations governing European and American option valuation, Numer. Meth. Part. D. E., 31(4) (2015), 1190-1208. crossref(new window)

20.
P. Carr and D.B. Madan, Option valuation using the fast Fourier transform, J. Comput. Financ., 2(4) (1999), 61-73. crossref(new window)

21.
A. Cerny, Introduction to fast Fourier transform in finance, J. Deriv., 12(1) (2004), 73-88. crossref(new window)

22.
M.A.H. Dempster and S.S.G. Hong, Spread option valuation and the fast Fourier transform, Springer Finance, Springer Finance, Springer, Berlin, (2002), 203-220.

23.
C.C. Hsu, S.K. Lin, and T.F. Chen, Pricing and hedging European energy derivatives: a case study of WTI oil options, Asia-Pac. J. Financ. St., 43(3) (2014), 317-355. crossref(new window)

24.
T. Sakuma and Y. Yamada, Application of homotopy analysis method to option pricing under Levy processes, Asia-Pac. Financ. Mark., 21(1) (2014), 1-14. crossref(new window)

25.
E.G. Haug, The Complete Guide to Option Pricing Formulas, New York, McGraw-Hill, (1998).

26.
M. Rubinstein, One for another, Risk, 4(7) (1991), 30-32.

27.
Korea Exchange, Historical KOSPI 200 index option price, http://www.krx.co.kr/m3/m32/m321/JHPKOR0300201.jsp, (2015).