Advanced SearchSearch Tips
Preparation and Field-Induced Electrical Properties of Perovskite Relaxor Ferroelectrics
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Preparation and Field-Induced Electrical Properties of Perovskite Relaxor Ferroelectrics
Fan, Huiqing; Peng, Biaolin; Zhang, Qi;
  PDF(new window)
(111)-oriented and random oriented (PBZ) perovskite relaxor ferroelectric thin films were fabricated on Pt(111)///Si substrate by sol-gel method. Nano-scaled antiferroelectric and ferroelectric two-phase coexisted in both (111)-oriented and random oriented PBZ thin film. High dielectric tunability (, E = 560 kV/cm) and figure-of-merit (FOM ~ 236) at room temperature was obtained in (111)-oriented thin film. Meanwhile, giant electrocaloric effect (ECE) ( and at ) at room temperature (290 K), rather than at its Curie temperature (408 K), was observed in random oriented (PBZ) thin film, which makes it a promising material for the application to cooling systems near room temperature. The giant ECE as well as high dielectric tunability are attributed to the coexistence of AFE and FE phases and field-induced nano-scaled AFE to FE phase transition.
Relaxor ferroelectrics;Dielectric tunability;Electrocaloric;Sol-gel;Field-induced phase transition;
 Cited by
J. Wang, T. Yang, K. Wei, G. Li, and S. Chen, J. Am. Ceram. Soc., 95, 1483 (2012). [DOI:]. crossref(new window)

T. M. Correia and Q. Zhang, J. Appl. Phys., 108, 044107 (2010). [DOI:]. crossref(new window)

F. Zimmermann, M. Voigts, W. Menesklou, and E. Ivers-Tiffee, J. Eur. Ceram. Soc., 24, 1729 (2004). [DOI:]. crossref(new window)

Y. Liu, X. Lu, Y. Jin, S. Peng, F. Huang, Y. Kan, T. Xu, K. Min, and J. Zhu, Appl. Phys. Lett., 100, 212902 (2012). [DOI:]. crossref(new window)

K. Khamchane, A. Vorobiev, T. Claeson, and S. Gevorgian, J. Appl. Phys., 99, 034103 (2006). [DOI:]. crossref(new window)

B. Peng, H. Fan, and Q. Zhang, J. Am. Ceram. Soc., 95, 1651 (2012). [DOI:]. crossref(new window)

Y. Zhang, G. Wang, Y. Chen, F. Cao, L. Yang, and X. Dong, J. Am. Ceram. Soc., 92, 2759 (2009). [DOI:]. crossref(new window)

G. Lu, A. Linsebigler, and J. T. Yates, J. Phys. Chem., 98, 11733 (1994). [DOI:]. crossref(new window)

X. Hao, J. Zhai, H. Ren, X. Song, and J. Yang, J. Am. Ceram. Soc., 93, 646 (2010). [DOI:]. crossref(new window)

Y. L. Kuo and J. M. Wu, Appl. Phys. Lett., 89, 132911 (2006). [DOI:]. crossref(new window)

X. Hao, J. Zhai, and X. Yao, J. Am. Ceram. Soc., 91, 4112 (2008). [DOI:]. crossref(new window)

M. H. Wu and J. M. Wu, Appl. Phys. Lett., 86, 022909 (2005). [DOI:]. crossref(new window)

A. S. Mischenko, Q. Zhang, J. F. Scott, R. W. Whatmore, N. D. Mathur, Science, 311, 1270 (2006). [DOI:]. crossref(new window)

S. G. Lu and Q. M. Zhang, Adv. Mater., 21, 1983 (2009). [DOI:]. crossref(new window)

B. Neese, B. Chu, S. G. Lu, Y. Wang, E. Furman, and Q. M. Zhang, Science, 321, 821 (2008). [DOI:]. crossref(new window)

O. V. Pakhomov, S. F. Karamenko, A. A. Semenov, A. S. Starkov, and A. V. Es'kov, Tech. Phys., 55, 1155 (2010). [DOI:]. crossref(new window)

B. A. Tuttle and D. A. Payne, Ferroelectrics, 37, 603 (1981). [DOI:]. crossref(new window)

D. Saranya, A. R. Chaudhuri, J. Parui, and S. B. Krupanidhi, Bull. Mater. Sci., 32, 259 (2009). [DOI:]. crossref(new window)

D. Viehland, Phys. Rev. B, 52, 778 (1995). [DOI: crossref(new window)

B. P. Pokharel and D. Pandey, J. Appl. Phys., 88, 5364 (2000). [DOI:]. crossref(new window)

B. P. Pokharel and D. Pandey, J. Appl. Phys., 90, 2985 (2001). [DOI:]. crossref(new window)

G. C. Lin, X. M. Xiong, J. X. Zhang, and Q. Wei, J. Therm. Anal. Calorim., 81, 41 (2005). [DOI:]. crossref(new window)

G. Sebald, S. Pruvost, L. Seveyrat, L. Lebrun, D. Guyomar, and B. Guiffard, J. Eur. Ceram. Soc., 27, 4021 (2007). [DOI:]. crossref(new window)

B. Peng, H. Fan, and Q. Zhang, J. Am. Ceram. Soc., 96, 1852 (2013). [DOI:]. crossref(new window)

B. Peng, H. Fan, and Q. Zhang, Adv. Func. Mater., 23, 2987 (2013). [DOI:]. crossref(new window)