JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Engineering of Bi-/Mono-layer Graphene Film Using Reactive Ion Etching
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Engineering of Bi-/Mono-layer Graphene Film Using Reactive Ion Etching
Irannejad, M.; Alyalak, W.; Burzhuev, S.; Brzezinski, A.; Yavuz, M.; Cui, B.;
  PDF(new window)
 Abstract
Although, there are several research studies on the engineering of the graphene layers using different etching techniques, there is not any comprehensive study on the effects of using different etching masks in the reactive ion etching (RIE) method on the quality and uniformity of the etched graphene films. This study investigated the effects of using polystyrene and conventional photolithography resist as a etching mask on the engineering of the number of graphene layers, using RIE. The effects were studied using Raman spectroscopy. This analysis indicated that the photo-resist mask is better than the polystyrene mask because of its lower post processing effects on the graphene surface during the RIE process. A single layer graphene was achieved from a bi-layer graphene after 3 s of the RIE process using oxygen plasma, and the bi-layer graphene was successfully etched after 6 s of the RIE process. The bilayer etching time was significantly smaller than reported values for graphene flakes in previous research.
 Keywords
Graphene;Reactive ion etching;Raman spectroscopy;
 Language
English
 Cited by
1.
Gold-Graphene Core-Shell Nanostructure Surface Plasmon Sensors, Plasmonics, 2016  crossref(new windwow)
 References
1.
T. Tsukamoto and T. Ogino, The Journal of Physical Chemistry C, 115, 8580 2011. [DOI: http://dx.doi.org/10.1021/jp1094933] crossref(new window)

2.
M. C. Lemme, D. C. Bell, J. R. Williams, L. A. Stern, B.W.H. Baugher, P. Jarillo-Herrero, and C. M. Marcus, ACS Nano, 3, 2674 (2009). [DOI: http://dx.doi.org/10.1021/nn900744z] crossref(new window)

3.
R. Fubo, L. Wen, and D. Lixin, Layer Engineering of Graphene with Oxygen Plasma Etching, Nanotechnology (IEEE-NANO), 2011 11th IEEE Conference on 2011.

4.
A. K. Geim and K. S. Novoselov, Nat Mater., 6, 183 (2007). http://dx.doi.org/10.1038/nmat1849] crossref(new window)

5.
F. Schwierz, Nat Nano, 5, 487 (2010). http://dx.doi.org/10.1038/nnano.2010.89] crossref(new window)

6.
Z. Li, M. He, D. Xu, and Z. Liu, Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 18, 1 (2014). [DOI: http://dx.doi.org/10.1016/j.jphotochemrev.2013.10.002] crossref(new window)

7.
T. Mueller, F. Xia, and P. Avouris, Nat. Photon., 4, 297 (2010). http://dx.doi.org/10.1038/nphoton.2010.40] crossref(new window)

8.
G. Q. Xie, J. Ma, P. Lv, W. L. Gao, P. Yuan, L. J. Qian, H. H. Yu, H. J. Zhang, J. Y. Wang, and D. Y. Tang, Optical Materials Express, 2, 878 (2012). [DOI: http://dx.doi.org/10.1364/OME.2.000878] crossref(new window)

9.
A. M. Haider, R. Fubo, L. Wen, and D. Lixin, Nano-Micro Letters, 6, 116 (2014). [DOI: http://dx.doi.org/10.1007/BF03353775] crossref(new window)

10.
B. Sanyal and O. Eriksson, Advanced Functional Materials: A Perspective from Theory and Experiment (Elsevier, 2012)

11.
X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, Science, 324, 1312 (2009). [DOI: http://dx.doi.org/10.1126/science.1171245] crossref(new window)

12.
D. Wei, Y. Liu, Y. Wang, H. Zhang, L. Huang, and G. Yu, Nano Letters, 9, 1752 (2009). [DOI:http://dx.doi.org/10.1021/nl803279t] crossref(new window)

13.
A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M. S. Dresselhaus, and J. Kong, Nano Letters, 9, 30 (2008). [DOI: http://dx.doi.org/10.1021/nl801827v]

14.
M. C. Prado, D. Jariwala, T. J. Marks, and M. C. Hersam, Applied Physics Letters, 102 (2013).

15.
C. Isaac, A. J. Luis, T. Jifa, and P. C. Yong, New Journal of Physics, 13, 025008 (2011). [DOI: http://dx.doi.org/10.1088/1367-2630/13/2/025008] crossref(new window)

16.
X. Wang and H. Dai, Nat. Chem., 2, 661 (2010). http://dx.doi.org/10.1038/nchem.719] crossref(new window)

17.
W. S. Lim, Y. Y. Kim, H. Kim, S. Jang, N. Kwon, B. J. Park, J. H. Ahn, I. Chung, B. H. Hong, and G. Y. Yeom, Carbon, 50, 429 (2012). [DOI: http://dx.doi.org/10.1016/j.carbon.2011.08.058] crossref(new window)

18.
S. C. Jeon, Y. S. Kim, and D. K. Lee, Trans. Electr. Electron. Mater., 11, 190 (2010). [DOI: http://dx.doi.org/10.4313/TEEM.2010.11.3.145] crossref(new window)

19.
P. L. Neumann, E. Tóvári, S. Csonka, K. Kamarás, Z. E. Horváth, and L. P. Biró, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 282, 130 (2012). [DOI: http://dx.doi.org/10.1016/j.nimb.2011.08.044] crossref(new window)

20.
J. R. Rani, J. Lim, J. Oh, J. W. Kim, H. S. Shin, J. H. Kim, S. Lee, and S. C. Jun, The Journal of Physical Chemistry C, 116, 19010 (2012). [DOI: http://dx.doi.org/10.1021/jp3050302] crossref(new window)

21.
M. Ferreira, E. H., M.V.O. Moutinho, F. Stavale, M. M. Lucchese, R. B. Capaz, C. A. Achete, and A. Jorio, Physical Review B, 82, 125429 (2010). [DOI: http://dx.doi.org/10.1103/PhysRevB.82.125429] crossref(new window)

22.
C.N.R. Rao and A. K. Sood, Graphene: Synthesis, Properties, and Phenomena (Wiley, 2013)]

23.
K. S. Subrahmanyam, L. S. Panchakarla, A. Govindaraj, and C.N.R. Rao, The Journal of Physical Chemistry C, 113, 4257 (2009). [DOI: http://dx.doi.org/10.1021/jp900791y] crossref(new window)

24.
Z. Tu, Z. Liu, Y. Li, F. Yang, L. Zhang, Z. Zhao, C. Xu, S. Wu, H. Liu, H. Yang, and P. Richard, Carbon, 73, 252 (2014). [DOI: http://dx.doi.org/10.1016/j.carbon.2014.02.061] crossref(new window)