JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Computation of Beam Stress and RF Performance of a Thin Film Based Q-Band Optimized RF MEMS Switch
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Computation of Beam Stress and RF Performance of a Thin Film Based Q-Band Optimized RF MEMS Switch
Singh, Tejinder;
  PDF(new window)
 Abstract
In lieu of the excellent radio frequency (RF) performance of microelectromechanical system ( MEMS) switches, these micro switches need higher actuation voltage for their operation. This requirement is secondary to concerns over the swtiches’ reliability. This paper reports high reliability operation of RF MEMS switches with low voltage requirements. The proposed switch is optimised to perform in the Q-band, which results in actuation voltage of just 16.4 V. The mechanical stress gradient in the thin micro membrane is computed by simulating von Mises stress in a multi-physics environment that results in 90.4 MPa stress. The computed spring constant for the membrane is 3.02 N/m. The switch results in excellent RF performance with simulated isolation of above 38 dB, insertion loss of less than 0.35 dB and return loss of above 30 dB in the Q-band.
 Keywords
High-isolation;Capacitive switch;RF MEMS;Meanders;Low-voltage;
 Language
English
 Cited by
 References
1.
C. L. Goldsmith, T. Lin, B. Powers, W. Wu, and B. Norvell, IEEE International MTT-S Symposium Digest, 1, 91 (1995).

2.
Z. J. Yao, S. Chen, S. Eshelman, D. Denniston, and C. L. Goldsmith, IEEE Journal of Microelectromechanical Systems, 8, 129 (1999). crossref(new window)

3.
T. Singh, Trans. Electr. Electron. Mater., 14, 172 (2013). crossref(new window)

4.
C. Ding, X. Huang, G. Gregori, E. R. Parker, M. P. Rao, D. R. Clarke, and N. C. MacDon- ald, Proc. of the 2005 ASME International Mechanical Engineering Congress and Exposition (Orlando, 2005) p. 1-4.

5.
T. Singh, Journal of Computational Electronics, 14, 167 (2015). crossref(new window)

6.
M. F. Aimi, M. P. Rao, N. C. MacDonald, A. S. Zuruhi, and D. P. Bothman, Nature Materials (Letters), 3, 103 (2004). crossref(new window)

7.
T. Singh and F. Pashaie, Microsystem Technologies, 1 (2014). [DOI: http://dx.doi.org/DOI:10.1007/s00542-014-2329-y 2014]

8.
T. Singh and K. J. Rangra, Microsystem Technologies, 1 (2015). [DOI: http://dx.doi.org/10.1007/s00542-015-2411-0 2015]

9.
T. Singh and N. Khaira, The Scientific World Journal, 2014, 1 (2014).

10.
T. Singh, Electronics, 17, 105 (2013).

11.
G. M. Rebeiz, RF MEMS: Theory, Design, and Technology. New York: Wiley-Interscience, 2003.

12.
C. O’Mahony, M. Hill, P. J. Hugher, and W. A. Lane, Journal of Micromechanics and Microengineering, 12, 438 (2002). crossref(new window)

13.
D. Peroulis, S. Pacheco, K. Sarabandi, and L. P. Katehi, IEEE Transactions on Microwave Theory and Techniques, 51, 259 (2003). crossref(new window)

14.
M. Lishchunska, N. Cordero, O. Slattery, and C. O’Mahony, Sensor Letters, 4, 200 (2006). crossref(new window)

15.
T. Singh and F. Pashaie, Journal of Computing Science and Engineering, 8 (2014).