JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Effect of Particle Size on the Dielectric and Piezoelectric Properties of 0.95(K0.5Na0.5)NbO3-0.05BaTiO3 Lead-free Piezoelectric Ceramics
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Effect of Particle Size on the Dielectric and Piezoelectric Properties of 0.95(K0.5Na0.5)NbO3-0.05BaTiO3 Lead-free Piezoelectric Ceramics
Bae, Seon-Gi; Shin, Hyea-Gyiung; Chung, Kwang-Hyun; Yoo, Ju-Hyun; Im, In-Ho;
  PDF(new window)
 Abstract
The particle sizes of 0.95(K0.5Na0.5)NbO3-0.05BaTiO3 powder were controlled by secondary milling time after calcination. The average particle sizes, Dmean, of 0.95(K0.5Na0.5)NbO3-0.05BaTiO3 powders were critically changed from 14.31 μm to 0.91 μm by secondary milling time. The dielectric and piezoelectric properties of 0.95(K0.5Na0.5)NbO3-0.05BaTiO3 ceramics depended on the particle sizes of powders after calcination and the secondary milling process. As secondary milling times after calcination were increased to more than 48 hr, the dielectric and piezoelectric properties of 0.95(K0.5Na0.5)NbO3-0.05BaTiO3 ceramics were deteriorated.
 Keywords
(K0.5Na0.5)NbO3-BaTiO3;Particle sizes;Secondary milling time;Dielectric;Lead-free piezoelectric;
 Language
English
 Cited by
1.
Tailoring Low-field Strain Properties of [0.97Bi1/2(Na0.78K0.22)1/2TiO3-0.03LaFeO3]-Bi1/2(Na0.82K0.18)1/2TiO3Lead-Free Relaxor/Ferroelectric Composites, Journal of the Korean Institute of Electrical and Electronic Material Engineers, 2016, 29, 6, 342  crossref(new windwow)
 References
1.
Y. H. Jeong, J. H. Yoo, S. H. Lee, and J. I. Hong, Sensor and Actuators A, 135, 215 (2007). [DOI: http://dx.doi.org/10.10.16/j.sna.2006.06.073] crossref(new window)

2.
C. Fujioka, R. Aoyama, H. Takeda, and S. Okamura, J. Eur. Ceram. Soc., 25, 2723 (2005). [DOI: http://dx.doi.org/10.1016/j.jeurceramsoc.2005.03.129] crossref(new window)

3.
R. J. Xie, Y. Akimune, R. Wang, N. Hirisaki, and T. Nishimura, Jpn. J. Appl. Phys., 42, 7404 (2003). [DOI: http://dx.doi.org/10.1143/JJAP.42.7404] crossref(new window)

4.
I. H. Im and K. H. Chung, J. Nanosci. Nanotechnol., 14, 8920 (2014). [DOI: http://dx.doi.org/10.1166/jnn.2014.10066] crossref(new window)

5.
R. Z. Zuo, X. S. Fang, and C. Ye, Appl. Phys. Lett., 90, 092904 (2007). [DOI: http://dx.doi.org/10.1063/1.2710768] crossref(new window)

6.
S. G. Bae, H. G. Shin, E. Y. Sohn, and I. H. Im, Trans. Electr. Electron. Mater., 14, 78 (2013). [DOI: http://dx.doi. org/10.4313/TEEM.2013.10.2.78] crossref(new window)

7.
Y. Saito, H. Takao, T. Tari, T. Nonoyama, K. Takatori, T. Homma, and T. Nagaya, Nature, 432, 84 (2004). [DOI: http://dx.doi.org/10.1038/nature03028] crossref(new window)

8.
S. H. Lee, K. S. Lee, J. H. Yoo, Y. H. Jeong, and H. S. Yoon, Trans. Electr. Electron. Mater., 12, 72 (2011). [DOI: http://dx.doi.org/10.4313/ TEEM. 2011.12.2.72] crossref(new window)

9.
X. Pang, J. Qiu, K. Zhu, and J. Du, Ceramics Int., 38, 2521 (2012). [DOI: http://dx.doi.org/10.1016/j.ceramint.2011.11.022] crossref(new window)

10.
P. Zhao, B. P. Zhang, R. Tu, and T. Goto, J. Am. Ceram. Soc., 91, 3078 (2008). [DOI: http://dx.doi.org/10.1111/j.1551-2916.2008.02518.x] crossref(new window)

11.
J. H. Ahn, J. H. Lee, S. H. Hong, N. M. Hwang, and D. Y. Kim, J. Am. Ceram. Soc., 86, 1421 (2003). [DOI: http://dx.doi.org/10.1111/j.1151-2916.2003.tb03486.x] crossref(new window)

12.
G. A. Samara, Phys. Rev., 151, 378 (1966). [DOI: http://dx.doi.org/10.1103/PhysRev.151.378] crossref(new window)