JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Characteristics of Lanthanum Silicates Electrolyte for Solid Oxide Fuel Cells
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Characteristics of Lanthanum Silicates Electrolyte for Solid Oxide Fuel Cells
Lee, Dong-Jin; Lee, Sung-Gap; Noh, Hyun-Ji; Jo, Ye-Won;
  PDF(new window)
 Abstract
La9.33(Si5V1)O26 ceramics were fabricated by the mixed oxide method for solid oxide electrolytes. La9.33(Si5V1)O26 specimens showed the hexagonal, space group P63 or P63/m, and the unit cell volume increased when the sintering temperature increased. The specimen sintered at 1,400℃ showed the X-ray patterns of the homogeneous apatite single phase without the second phase, such as La2SiO5 and SiO2. The specimen sintered at 1,400℃ showed the maximum sintered density of 4.93 g/cm3. When the sintering temperature increased, the electrical conductivities increased, the activation energy decreased and the values were 7.83×10−4 S/cm, 1.61 eV at 600℃, respectively.
 Keywords
SOFC;Lanthanum silicate;La9.33;Mixed-oxide method;
 Language
English
 Cited by
 References
1.
H. Arikawa, H. Nishiguchi, T. Ishihara, and Y. Takita, Solid State Ionics, 136, 31 (2000). [DOI: http://dx.doi.org/10.1016/S01672738(00)00386-6] crossref(new window)

2.
X. Zhang, S. Ohara, R. Maric, H, OKawa, T. Fukui, H. Yoshida, T. Inagaki, and K. Miura, Solid State Ionics, 133, 153 (2000). [DOI: http://dx.doi.org/10.1016/S0167-2738(00)00744-X] crossref(new window)

3.
M. Hrovat, A. Ahmad-Khanlou, Z. Samarzija, and J. Hole, Mater. Res. Bull., 34, 2027 (1999). [DOI: http://dx.doi.org/10.1016/ S0025-5408(99)00220-2] crossref(new window)

4.
E. Djurado and M. Labeau, J. Anal. Chem., 365, 277 (1999). [DOI: http://dx.doi.org/10.1007/s002160051488] crossref(new window)

5.
J. S. Lee, M. Lerch, J. Maier, J. Solid State Chemistry, 179, 270 (2006). [DOI: http://dx.doi.org/10.1016/j.jssc.2005.10.012] crossref(new window)

6.
H. Yoshioka, J. Am. Ceram. Soc., 90, 3099 (2007). [DOI: http:// dx.doi.org/10.1111/j.1551-2916.2007.01862.x] crossref(new window)

7.
E. Kendrick, M. Islam, and P. Slater, J. Mater. Chem., 17, 3104 (2007). [DOI: http://dx.doi.org/10.1039/b704426g] crossref(new window)

8.
J. R. Tolchard, M. S. Islam, and P. R. Slater, J. Mater. Chem., 12, 1956 (2005).

9.
G. Blasse, J. Solid State Chem., 12, 181 (1975). [DOI: http:// dx.doi.org/10.1016/0022-4596(75)90009-2] crossref(new window)

10.
S. C. Singhal and K. Kendall, High temperature Solid Oxide Fuel Cells: Fundamentals, Design and Applications (Elsevier, Oxford, UK, 2003).

11.
S. Nakayma, T. Kageyama, H. Aono, Y. J. Sadaoka, Mater. Chem., 5, 1801 (1995). [DOI: http://dx.doi.org/10.1039/jm9950501801] crossref(new window)

12.
S. Shin, H. H. Huang, and M. Ishigame, Solid State Ionics, 40, 910 (1990). [DOI: http://dx.doi.org/10.1016/01672738(90)90151-G] crossref(new window)

13.
A. D. Brailsford and D. K Hohnke, Solid State Ionics, 11, 133 (1983). [DOI: http://dx.doi.org/10.1016/0167-2738(83)90050-4] crossref(new window)

14.
R. A. Alberty and R. J. Silbey, Physical Chemistry (New York, Wiley, 1997).

15.
W. Stiller, Arrhenius Equation and non-equilibrium kinetics: 100 years Arrhenius Equation. Leipzig, BSB B.G. Teubner, (1989)

16.
K. D. Kruer and Ann, Rev. Mater. Res., 33, 333 (2003). [DOI: http://dx.doi.org/10.1146/annurev.matsci.33.022802.091825] crossref(new window)