Advanced SearchSearch Tips
Nanopyramid Formation by Ag Metal-Assisted Chemical Etching for Nanotextured Si Solar Cells
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Nanopyramid Formation by Ag Metal-Assisted Chemical Etching for Nanotextured Si Solar Cells
Parida, Bhaskar; Choi, Jaeho; Palei, Srikanta; Kim, Keunjoo; Kwak, Seung Jong;
  PDF(new window)
We investigated the formation of a nanopyramidal structure and fabricated nanotextured Si solar cells using an Ag metal-assisted chemical etching process. The nanopyramidal structure was formed on a Si flat surface and the nanotexturing process was performed on the p-type microtextured Si surface. The nanostructural formation shows a transition from nanopits and nanopores to nanowires with etching time. The nanotextured surfaces also showed the photoluminescence spectra with an enhanced intensity in the wavelength range of 1,100~1,250 nm. The photoreflectance of the nanotextured Si solar cells was strongly reduced in the wavelength range of 337~596 nm. However, the quantum efficiency is decreased in the nanotextured samples due to the increased nanosurface recombination. The nanotexturing process provides a better p-n junction impedance of the nanotextured cells, resulting in an enhanced shunt resistance and fill factor which in turn renders the possibility of the increased conversion efficiency.
Metal assisted chemical etching;Si solar cells;Nanotexturing;Nanopyramids;
 Cited by
Silver-coated nanoporous gold skeletons for fluorescence amplification, Microporous and Mesoporous Materials, 2017, 237, 60  crossref(new windwow)
M. A. Green and M. J. Keevers, Prog. Photovolt: Res. Appl., 3 189 (1995). [DOI:] crossref(new window)

P. Papet, O. Nichiporuk, A. Kaminski, Y. Rozier, J. Kraiem, J. F. Lelievre, A. Chaumartin, A. Fave, and M. Lemiti, Sol. Energ. Mat. Sol. Cells, 90, 2319 (2006). [DOI:] crossref(new window)

E. Vazsonyi, K. De Clercq, R. Einhaus, E. Van Kerschaver, K. Said, J. Poortmans, J. Szlufcik, J. Nijs, Sol. Energ. Mat. Sol. Cells, 57, 179 (1999). [DOI:] crossref(new window)

J. Choi, B. Parida, H. Y. Ji, S. Park, and K. Kim, J. Nanosci. Nanotechnol., 12, 5619 (2012). [DOI:] crossref(new window)

J. Choi, B. Parida, H.Y. Ji, S. Park, and K. Kim, J. Nanosci. Nanotechnol., 12, 5552 (2012). [DOI:] crossref(new window)

B. Parida, J. Choi, G. Lim, K. Kim, and K. Kim, J. Nanomater., 2013, 1 (2013). [DOI:] crossref(new window)

H. Y. Ji, J. Choi, G. Lim, B. Parida, K. Kim, J. H. Jo, and H. S. Kim, J. Nanosci. Nanotechnol., 13, 7806 (2013). [DOI:] crossref(new window)

H. Lv, H. Shen, Y. Jiang, C. Gao, H. Zhao, and J. Yuan, Appl. Surf. Sci., 258, 5451 (2014). [DOI:] crossref(new window)

J. Oh, H. C. Yuan, and H. M. Branz, Nature Nanotechnol., 7, 743 (2012). [DOI:] crossref(new window)

K. S. Do, M. G. Kang, J. J. Park, G. H. Kang, J. M. Myoung, and H. Song, Jpn. J. Appl. Phys., 52, 092301 (2013). [DOI:] crossref(new window)

B. K. Nayak, V. Iyengar, and M. C. Gupta, Prog. Photovolt: Res. Appl., 19, 631 (2011). [DOI:] crossref(new window)

M. Moreno, D. Daineka, and P. R. I Cabarrocas, Sol. Energ. Mat. Sol. Cells, 94, 733 (2010). [DOI:] crossref(new window)

C. Battaglia, K. Soderstrom, J. Escarre, F. J. Haug, D. Domine, P. Cuony, M. Boccard, G. Bugnon, C. Denizot, M. Despeisse, A. Feltrin, and C. Ballif, Appl. Phys. Lett., 96, 213504 (2010). [DOI:] crossref(new window)

D. Z. Dimitrov, C. H. Lin, C. H. Du, and C. W. Lan, Phys. Status Solidi A, 12, 2926 (2011). [DOI:] crossref(new window)

Z. Huang, N. Geyer, P. Werner, J. D. Boor, and U. Gosele, Adv. Mater., 23, 285 (2011). [DOI:] crossref(new window)

D. Z. Dimitrov and C. H. Du, Appl. Surf. Sci., 266, 1 (2013). [DOI:] crossref(new window)

S. K. Srivastava, D. Kumar, P. K. Singh, M. Kar, M. Husain, and V. Kumar, Sol. Energ. Mat. Sol. Cells, 94, 1506 (2010). [DOI:] crossref(new window)

B. Parida, J. Choi, G. Lim, S. Park, and K. Kim, J. Nanosci. Nanotechnol., 14, 9224 (2014). [DOI:] crossref(new window)

P. Panek, M. Lipinski, and H. Czternastek, Opto-Electr. Rev., 8, 57 (2000). [DOI:]

J. Y. Jung, Z. Guo, S. W. Jee, H. D Um, K. T. Park, and J. H. Lee, Opt. Express, 18, A286 (2010). [DOI:] crossref(new window)

Y. J. Cho and H. S. Chang, Phys. Status Solidi C, 9, 2097 (2012). [DOI:] crossref(new window)

J. Xiao, L. Wang, X. Li, X. Pi, and D. Yang, Appl. Surf. Sci., 257, 472 (2010). [DOI:] crossref(new window)

C. Chen, R. Jia, H. Yue, H. Li, X. Liu, D. Wu, W. Ding, T. Ye, S. Kasai, H. Tamotsu, J. Chu, and S. Wang, J. Appl. Phys., 108, 094318 (2010). [DOI:] crossref(new window)

F. Toor, H. M. Branz, M. R. Page, K. M. Jones, and H. C. Yuan, Appl. Phys. Lett., 99, 103501 (2011). [DOI:] crossref(new window)

H. C. Yuan, V. E. Yost, M. R. Page, P. Stradins, D. L. Meier, and H. M. Branz, Appl. Phys. Lett., 95, 123501 (2009). [DOI:] crossref(new window)

K. Kim and J. Choi, J. Appl. Phys., 105, 033103 (2009). [DOI:] crossref(new window)

M. A. Tischler, R. T. Collins, J. H. Stathis, and J. C. Tsang, Appl. Phys. Lett., 60, 639 (1992). [DOI:] crossref(new window)

D. K. Kim, Y. J. Oh, S. H. Kim, K. J. Hong, H. Y. Jung, H. J. Kim, and M. S. Jeon, Trans. Electr. Electron. Mater., 14, 177 (2013). [DOI:] crossref(new window)

B. Parida, H. Y. Ji, G. H. Lim, S. Park, and K. Kim, J. Renew. Sust. Energ., 6, 053120 (2014). [DOI:] crossref(new window)

J. Heo, Trans. Electr. Electron. Mater., 14, 160 (2013). [DOI:] crossref(new window)