Advanced SearchSearch Tips
Nanotextured Si Solar Cells on Microtextured Pyramidal Surfaces by Silver-assisted Chemical Etching Process
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Nanotextured Si Solar Cells on Microtextured Pyramidal Surfaces by Silver-assisted Chemical Etching Process
Parida, Bhaskar; Choi, Jaeho; Palei, Srikanta; Kim, Keunjoo; Kwak, Seung Jong;
  PDF(new window)
We investigated nanotextured Si solar cells using the silver-assisted chemical etching process. The nanotexturing process is very sensitive to the concentration of chemical etching solution. The high concentration process results in a nanowire formation for the nanosurfaces and causes severe surface damage to the top region of the micropyramids. These nanowires show excellent light absorption in photoreflectance spectra and radiative light emission in photoluminescence spectra. However, the low concentration process forms a nano-roughened surface and provides high minority carrier lifetimes. The nano-roughened surfaces of the samples show the improved electrical cell properties of quantum efficiency, conversion efficiency, and cell fill factor due to the reduction in the formation of the over-doped dead layer.
Nanotextured Si surface;Micropyramid;Nanocavity lasing;Si solar cells;
 Cited by
M. A. Green and M. J. Keevers, Prog. Photovolt: Res. Appl., 3, 189 (1995). [DOI:] crossref(new window)

H. Y. Ji, J. Choi, G. Lim, B. Parida, K. Kim, J. H. Jo, and H. S. Kim, J. Nanosci. Nanotechnol. 13, 7806 (2013). [DOI:] crossref(new window)

B Parida, J. Choi, G. Lim, and K. Kim, J. Nanomater. 2013 953790 (2013). [DOI:] crossref(new window)

J.Choi, B. Parida, H. Y. Ji, S. Park, and K. Kim, J. Nanosci. Nanotechnol. 12 5552 (2012). [DOI:] crossref(new window)

H. Jansen, M. de. Boer, R. Legtenberg, and M. Elwenspoek, J. Micromech. Microeng. 5 115 (1995). [DOI:] crossref(new window)

I. J. Lee, U. Paik, and J. G. Park, Sol. Energy, 91 256 (2013). [DOI:] crossref(new window)

K. Peng, A. Lu, R. Zhang and S. T. Lee, Adv. Funct. Mater. 18 3026 (2008). [DOI:] crossref(new window)

S. Chattopadhyay, Y. F. Huang, Y. J Jen, A. Ganguly, K. H. Chen, and L. C. Chen, Mater. Sci. Eng. R-Rep. 69 1(2010). [DOI:] crossref(new window)

P. Panek, M. Lipinski, and H. Czternastek, Opto-Electr. Rev. 8 57 (2000).

C. I. Yeo, J. B. Kim, Y. M. Song, and Y. T. Lee, Nanoscale Res. Lett. 8 159(2013). [DOI:] crossref(new window)

P. Vitanov, M. Kamenova, N. Tyutyundzhiev, M. Delibasheva, E. Goranova, and M. Peneva, Thin Solid Films 297 299 (1997). [DOI: (96)09413-8] crossref(new window)

Y. Xia, B. Liu, J. Liu, Z. Shen, and C. Li, Sol. Energy 85 1574(2011). [DOI:] crossref(new window)

D. Kumar, S. K. Srivastava, P. K. Singh, M. Husain and V. Kumar, Sol. Energ. Mat. Sol. Cells 95 215(2011). [DOI:] crossref(new window)

M. Y. Shen, C. H. Crouch, J. E. Carey, and E. Mazur, Appl. Phys. Lett. 85 5694 (2004). [DOI:] crossref(new window)

B. Parida, J. Choi, G Lim, S. Park and K. Kim, J. Nanosci. Nanotechno-l. 14 9224 (2014). [DOI:] crossref(new window)

Y. T. Lu and A. R. Barron, Phys. Chem. Chem. Phys. 15 9862(2013). [DOI:] crossref(new window)

J Oh, H. C. Yuan and H. M. Branz, Nature Nanotech. 7 743(2012). [DOI:] crossref(new window)

R. L. Smith and S. D. Collins, J. Appl. Phys. 71 R1-R22 (1992). [DOI:] crossref(new window)

C. Y. Chen, L. LI, and C. P. Wong, Chem. Asian J. 9 93 (2014). [DOI:] crossref(new window)

K. Peng, M. Zhang, A. Lu, N. B. Wong, R. Zhang and S.T. Lee, Appl. Phys. Lett. 90, 163123(2007).[DOI:] crossref(new window)

F. Karbassian, B. Kheyraddini Mousavi, S. Rajabali, R. Talei, S. Mohajerzadeh, and E. Asl-Soleimani, J. Electron. Mater., 43, 1271 (2014). [DOI:] crossref(new window)

P. Deak, M. Rosenbauer, M. Stutzmann, J. Weber, and M. S. Brandt, Phys. Rev. Lett., 69, 2531 (1992). [DOI:] crossref(new window)

A. G. Cullis, L. T. Canham, and P.D.J. Calcott, J. Appl. Phys., 82, 909 (1997). [DOI:] crossref(new window)

C. Chartier, S. Bastide, and C. Levy-Clement, Electrochem. Acta, 53, 5509 (2008). [DOI:] crossref(new window)

X. Li and P. W. Bohn, Appl. Phys. Lett., 77, 2572(2000). [DOI:] crossref(new window)

D. E. Aspnes, J. B. Theeten, and F. Hottier, Phys. Rev. B, 20, 3292 (1979). [DOI:] crossref(new window)

O. Bisi, S. Ossicini, and L. Pavesi, Porous silicon: a quantum sponge structure for silicon based optoelectronics Surf. Sci. Rep., 38, 1(2000). [DOI:] crossref(new window)

C. Chen, R. Jia, H. Yue, H. Li, X. Liu, D. Wu, W. Ding, T. Ye, S. Kasai, H. Tamotsu,J. Chu, and S. Wang, J. Appl. Phys., 108, 094318 (2010). [DOI:] crossref(new window)

D. Z. Dimitrov and C. H. Du, Appl. Surf. Sci., 266, 1 (2013). [DOI :] crossref(new window)

H. Y. Chen, G. D. Yuan, Y. Peng, M. Hong, Y. B. Zhang, Y. Zhang, Z. Q. Liu, X. Wang, B. Cai, Y. M. Zhu, and J. M. Li, Appl. Phys. Lett., 104, 193904(2014). [DOI:] crossref(new window)

M. A. Tischler, R. T. Collins, J. H. Stathis, and J. Tsang, Appl. Phys. Lett., 60, 639 (1992). [DOI:] crossref(new window)

K. A. Salman, Z. Hassan, and K. Omar, Int. J. Electrochem. Sci., 7, 376 (2012).

F. Toor, H. M. Branz, M. R. Page, K. M. Jones, and H. C. Yuan, Appl. Phys. Lett., 99, 103501 (2011). [DOI:] crossref(new window)

D. Zhang, R. Jia, C. Chen, W. Ding, Z. Jin, X. Liu, and T. Ye, Chem. Phys. Lett., 601, 69 (2014). [DOI:] crossref(new window)

H. C. Yuan, V. E. Yost, M. R. Page, P. Stardins, D. L. Meier and H. M. Branz, Appl. Phys. Lett., 95, 123501 (2009). [DOI:] crossref(new window)

V. V. Iyengar, B. K. Nayak. K. L. More, H. M. Meyer, M. D. Biegalski, J. V. Li, and M. C. Gupta, Sol. Energ. Mat. Sol. Cells, 95, 2745 (2011). [DOI:] crossref(new window)

M. Hong, G. D. Yuan, Y. Peng, H. Y. Chen, Y. Zhang, Z. Q. Z. Q. Liu, J. X. Wang, B. Cai, Y. M. Zhu, Y. Chen, J. H. Liu, and J. M. Li, Appl. Phys. Lett., 104, 253902 (2014). [DOI:] crossref(new window)

Z. Zuo, K. Zhu, G. Cui, W. Huang, J. Qu, Y. Shi, Y. Liu, and G. Ji, Sol. Energ. Mat. Sol. Cells, 125, 248 (2014). [DOI:] crossref(new window)