JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Microstructure and Varistor Properties of ZVMND Ceramics with Sintering Temperature
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Microstructure and Varistor Properties of ZVMND Ceramics with Sintering Temperature
Nahm, Choon-Woo;
  PDF(new window)
 Abstract
The sintering effect on the microstructure, electrical properties, and dielectric characteristics of ZnO-V2O5-MnO2-Nb2O5-Dy2O3-based ceramics was investigated. With the increase of sintering temperature from 875 to 950℃, the density of the sintered pellets decreased from 5.57 to 5.45 g/cm3 and the average grain size increased from 4.3 to 10.9 μm. The breakdown field decreased noticeably from 6,095 to 996 V/cm with the increase of sintering temperature. The varistor ceramics sintered at 900℃ exhibited the best nonlinear properties: 39.2 in the nonlinear coefficient and 0.24 mA/cm2 in the leakage current density. The dielectric constant increased sharply from 658.6 to 2,928.8 with the increase of sintering temperature. On the whole, the dissipation factor exhibited a fluctuation with the increase of the sintering temperature, and a minimum value of 0.284 at 900℃.
 Keywords
Vanadium-doped zinc oxide ceramics;Dy2O3;Sintering;Microstructure;Electrical properties;Varistors;
 Language
English
 Cited by
 References
1.
M. Matsuoka, Jpn. J. Appl. Phys., 10, 736 (1971). [DOI: http://dx.doi.org/10.1143/JJAP.10.736] crossref(new window)

2.
L. M. Levinson and H. R. Philipp, Am. Ceram. Soc. Bull., 65, 639 (1986).

3.
T. K. Gupta, J. Am. Ceram. Soc., 73, 1817 (1990). [DOI: http://dx.doi.org/10.1111/j.1151-2916.1990.tb05232.x] crossref(new window)

4.
K. Mukae, Am. Ceram. Bull., 66, 1329 (1987).

5.
J. K. Tsai and T. B. Wu, J. Appl. Phys., 76, 4817 (1994). [DOI: http://dx.doi.org/10.1063/1.357254] crossref(new window)

6.
J. K. Tsai and T. B. Wu, Mater. Lett., 26, 199 (1996). [DOI: http://dx.doi.org/10.1016/0167-577X(95)00217-0] crossref(new window)

7.
H. H. Hng and P. L. Chan, Ceram. Int., 30, 1647 (2004). [DOI: http://dx.doi.org/10.1016/j.ceramint.2003.12.162] crossref(new window)

8.
C. W. Nahm, Solid State Commun., 143, 453 (2007). [DOI: http://dx.doi.org/10.1016/j.ssc.2007.06.027] crossref(new window)

9.
H. H. Hng, and K. Y. Tse, Ceramic. Int., 34, 1153 (2008). [DOI: http://dx.doi.org/10.1016/j.ceramint.2007.02.004] crossref(new window)

10.
H. H. Hng and P. L. Chan, Ceram. Int., 35, 409 (2009). [DOI: http://dx.doi.org/10.1016/j.ceramint.2007.12.004] crossref(new window)

11.
C. W. Nahm, J. Mater. Sci.: Mater. Electron., 21, 540 (2010). [DOI: http://dx.doi.org/10.1007/s10854-009-9954-8] crossref(new window)

12.
C. W. Nahm, J. Mater. Sci.: Mater. Electron., 23, 457 (2012). [DOI: http://dx.doi.org/10.1007/s10854-011-0512-9] crossref(new window)

13.
C. W. Nahm, J. Am. Ceram. Soc., 94, 3227 (2011). [DOI: http://dx.doi.org/10.1111/j.1551-2916.2011.04812.x] crossref(new window)

14.
C. W. Nahm, J. Alloy. Compd., 578, 132 (2013). [DOI: http://dx.doi.org/10.1016/j.jallcom.2013.05.005] crossref(new window)

15.
C. W. Nahm, J. Mater. Sci.: Mater. Electron., 26, 4144 (2015). [DOI: http://dx.doi.org/10.1007/s10854-015-2959-6] crossref(new window)

16.
J. C. Wurst and J. A. Nelson, J. Am. Ceram. Soc., 55, 109 (1972). [DOI: http://dx.doi.org/10.1111/j.1151-2916.1972.tb11224.x] crossref(new window)