Advanced SearchSearch Tips
Growth and Characteristics of Al2O3/AlCrNO/Al Solar Selective Absorbers with Gas Mixtures
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Growth and Characteristics of Al2O3/AlCrNO/Al Solar Selective Absorbers with Gas Mixtures
Park, Soo-Young; Han, Sang-Uk; Kim, Hyun-Hoo; Jang, Gun-Eik; Lee, Yong-Jun;
  PDF(new window)
AlCrNO cermet films were prepared on aluminum substrates using a DC-reactive magnetron sputtering method and a water-cooled Al:Cr target. The Al2O3/AlCrNO (LMVF)/AlCrNO (MMVF)/AlCrNO (HMVF)/Al/substrate of the 5 multi-layers was prepared according to the Ar and (N2 + O2) gas-mixture rates. The Al2O3 of the top layer is the anti-reflection layer of triple AlCrNO (LMVF)/AlCrNO (MMVF)/AlCrNO (HMVF) layers, and an Al metal forms the infrared reflection layer. In this study, the crystallinity and surface properties of the AlCrNO thin films were estimated using X-ray diffraction (XRD) and field-emission scanning electron microscopy (FESEM), while the composition of the thin films was systematically investigated using Auger electron spectroscopy (AES). The optical properties of the wavelength spectrum were recorded using UH4150 spectrophotometry (UV-Vis-NIR) at a range of 0.3 μm to 2.5 μm.
Solar energy material;Solar selective absorber;DC-magnetron sputter;Multi-layers;Absorptance;
 Cited by
Structural, Morphological, and Optical Characterizations of Mo, CrN and Mo:CrN Sputtered Coatings for Potential Solar Selective Applications, Applied Surface Science, 2018  crossref(new windwow)
I. T. Ritchie and B. Window, Appl. Opt., 16, 1438 (1977). [DOI:] crossref(new window)

H. C. Barshilia, N. Selvakumar, and K. S. Rajam, Appl. Phys. Lett., 89, 1 (2006). [DOI:] crossref(new window)

Q. C. Zhang, M. S. Hadavi, K. D. Lee, and Y. G. Shen, J. Phys. D: Appl. Phys., 36, 723 (2003). [DOI:] crossref(new window)

K. D. Lee, J. Kor. Sol. Energy Soc., 33, 31 (2013). [DOI:] crossref(new window)

T. I. Ohm, W. T. Yeo, and D. C. Kim, J. Kor. Sol. Energy Soc., 33, 27 (2013). [DOI:] crossref(new window)

A. R. Shashikala, A. K. Sharma, and D. R. Bhandari, Sol. Energy Mater. & Sol. Cells, 91, 629 (2007). [DOI: http://dx.doi. org/10.1016/j.solmat.2006.12.001] crossref(new window)

H. Okano, N. Tanaka, Y. Takahashi, T. Tanaka, K. Shibata, and S. Nakano, Appl. Lett., 64, 166 (1994). [DOI: http://dx.doi. org/10.1063/1.111553] crossref(new window)

E. Barrera-Calva, A. Avila, J. Mena, V. H. Lara, M. Ruiz, and J. Mendez-Vivar, Sol. Energy Mater. & Sol. Cells, 76, 387 (2003). [DOI:] crossref(new window)

K. S. Stevens, M. Kinniburgh, A. F. Schwartzman, A. F. Ohtani, and R. Beresford, Phys. Lett., 66, 3179 (1995).

F. C. Stedile, I. J. Baumvol, W. H. Schreiner, and F. L. Freire, J. Vac. Sci. Technol., 10, 3272 (1992). [DOI:] crossref(new window)

J. Chen, C. Guo, J. Chen, J. He, Y. Ren, and L. Hu, Mater. Lett., 133, 71 (2014). [DOI:] crossref(new window)

Q. C. Zhang, Sol. Energy Mater. & Sol. Cells, 52, 95 (1998). [DOI:] crossref(new window)

M. D. Julkarnain, J. Hossain, K. S. Sharif, and K. A. Khan, J. Optoelect.& Adv. Mater., 13, 485 (2011).

S. Esposito, A. Antonaia, M. L. Addonizio, and S. Aprea, Thin Solid Films, 517, 6000 (2009). [DOI: j.tsf.2009.03.191] crossref(new window)

R. C. Juang, Y. C. Yeh, B. H. Chang, W. C. Chen, and T. W. Chung, Thin Solid Films, 518, 5501 (2010). [DOI: http://dx.doi. org/10.1016/j.tsf.2010.04.025] crossref(new window)

H. C. Barshilia, Sol. Energy Mater. & Sol. Cells, 130, 322 (2014). [DOI:] crossref(new window)