Advanced SearchSearch Tips
Characterization of Graphite Oxide Reduced by Thermal and/or Chemical Treatments
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Characterization of Graphite Oxide Reduced by Thermal and/or Chemical Treatments
Kim, Jungsoo; Nam, Dae-Geun; Yeum, Jeong Hyun; Suh, Sungbu; Oh, Weontae;
  PDF(new window)
Reduced graphite oxides (rGOs) were prepared by the common graphite oxidation method and the subsequent reductions. The reduction of graphite oxides (GOs) was conducted chemically and/or thermally. To further reduce the as-prepared rGOs, GOs were treated with chemical/thermal reductions or thermal/chemical reductions, in which the reduction sequence was also considered. The structural changes of as-prepared rGOs, depending on reduction methods, were investigated by X-ray diffraction analyses, Raman spectroscopy, X-ray photoelectron spectroscopy, and scanning electron microscopy. In addition, we discuss the structural change of the rGOs and their closely related physical and electrical properties, such as thermogravimetry, nitrogen adsorption isotherm, and sheet resistance.
Graphite;Graphite oxide;Reduced graphite oxide;Graphene;Reduction;
 Cited by
K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science, 306, 666 (2004). [DOI:] crossref(new window)

T. Cohen-Karni, Q. Qing, Q. Li, Y. Fang, and C. M. Lieber, Nano Letters, 10, 1098 (2010). [DOI:] crossref(new window)

C. Lee, X. Wei, J. W. Kysar, and J. Hone, Science, 321, 385 (2008). [DOI:] crossref(new window)

S. Park, K. S. Lee, G. Bozoklu, W. Cai, S. T. Nguyen, and R. S. Ruoff, ACS Nano, 2, 572 (2008). [DOI:] crossref(new window)

A. K. Geim and K. S. Novoselov, Nature Mater., 6, 183 (2007). [DOI:] crossref(new window)

G. Eda, G. Fanchini, and M. Chhowalla, Nature Nano, 3, 270 (2008). [DOI:] crossref(new window)

Z. Wei, D. Wang, S. Kim, S. Y. Kim, Y. Hu, M. K. Yakes, A. R. Laracuente, Z. Dai, S. R. Marder, C. Berger, W. P. King, W. A. de Heer, P. E. Sheehan, and E. Riedo, Science, 328, 1373 (2010). [DOI:] crossref(new window)

H. A. Becerril, J. Mao, Z. Liu, R. M. Stoltenberg, Z. Bao, and Y. Chen, ACS Nano, 2, 463 (2008). [DOI: nn700375n] crossref(new window)

K. X. Sheng, Y. X. Xu, C. Li, and G. Q. Shi, New Carbon Materials, 26, 9 (2011). [DOI:] crossref(new window)

M. Koo, J. S. Bae, S. Shim, D. Kim, D. G. Nam, J. W. Lee, G. W. Lee, J. Yeum, and W. Oh, Colloid Polym. Sci., 289, 1503 (2011). [DOI:] crossref(new window)

K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi, and B. H. Hong, Nature, 457, 706 (2009). [DOI:] crossref(new window)

F. Schedin, A. K. Geim, S. V. Morozov, E. W. Hill, P. Blake, M. I. Katsnelson, and K. S. Novoselov, Nature Mater., 6, 652 (2007). [DOI:] crossref(new window)

X. Wang, L. Zhi, and K. Mullen, Nano Letters, 8, 323 (2007). [DOI:] crossref(new window)

N. Li, Y. Huang, F. Du, X. He, X. Lin, H. Gao, Y. Ma, F. Li, Y. Chen, and P. C. Eklund, Nano Letters, 6, 1141 (2006). [DOI:] crossref(new window)

H. B. Zhang, Q. Yan, W. G. Zheng, Z. He, and Z. Z. Yu, ACS Appl. Mater. Interf., 3, 918 (2011). [DOI: am200021v] crossref(new window)

M. D. Stoller, S. Park, Y. Zhu, J. An, and R. S. Ruoff, Nano Letters, 8, 3498 (2008). [DOI:] crossref(new window)

C. Gómez-Navarro, M. Burghard, and K. Kern, Nano Letters, 8, 2045 (2008). [DOI: crossref(new window)

D. R. Dreyer, S. Park, C. W. Bielawski, and R. S. Ruoff, Chem. Soc. Reviews, 39, 228 (2010). [DOI:] crossref(new window)

S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. T. Nguyen, and R. S. Ruoff, Carbon, 45, 1558 (2007). [DOI:] crossref(new window)

W. Chen, L. Yan, and P. R. Bangal, Carbon, 48, 1146 (2010). [DOI:] crossref(new window)

A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M. S. Dresselhaus,and J. Kong, Nano Letters, 9, 30 (2008). [DOI:] crossref(new window)

I. Vlassiouk, M. Regmi, P. Fulvio, S. Dai, P. Datskos, G. Eres, and S. Smirnov, ACS Nano, 5, 6069 (2011). [DOI: http://dx.doi. org/10.1021/nn201978y] crossref(new window)

X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni,I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, Science, 324, 1312 (2009). [DOI:] crossref(new window)

P. W. Sutter, J. I. Flege, and E. A. Sutter, Nature Mater., 7, 406 (2008). [DOI:] crossref(new window)

L. Staudenmaier, Berichte der Deutschen Chemischen Gesellschaft, 32, 1394 (1899). [DOI:] crossref(new window)

W. S. Hummers and R. E. Offeman, J. Am. Chem. Soc., 80, 1339 (1958). [DOI:] crossref(new window)

C. Gómez-Navarro, R. T. Weitz, A. M. Bittner, M. Scolari, A. Mews, M. Burghard, and K. Kern, Nano Letters, 7, 3499 (2007). [DOI:] crossref(new window)

Y. Zhu, M. D. Stoller, W. Cai, A. Velamakanni, R. D. Piner, D. Chen, and R. S. Ruoff, ACS Nano, 4, 1227 (2010). [DOI:] crossref(new window)

X. Gao, J. Jang, and S. Nagase, J. Phys. Chem. C, 114, 832 (2009). [DOI:] crossref(new window)

M. L. Kraft, S. F. Fishel, C. G. Marxer, P. K. Weber, I. D. Hutcheon, and S. G. Boxer, Appl. Surf. Sci., 252, 6950 (2006). [DOI:] crossref(new window)

F. Tuinstra and J. L. Koenig, J. Chem. Phys., 53, 1126 (1970). [DOI:] crossref(new window)