JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Electron Transport Mechanisms in Ag Schottky Contacts Fabricated on O-polar and Nonpolar m-plane Bulk ZnO
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Electron Transport Mechanisms in Ag Schottky Contacts Fabricated on O-polar and Nonpolar m-plane Bulk ZnO
Kim, Hogyoung;
  PDF(new window)
 Abstract
We prepared silver Schottky contacts to O-polar and nonpolar m-plane bulk ZnO wafers. Then, by considering various transport models, we performed a comparative analysis of the current transport properties of Ag/bulk ZnO Schottky diodes, which were measured at 300, 200, and 100 K. The fitting of the forward bias current-voltage (I-V) characteristics revealed that the tunneling current is dominant as the transport component in both the samples. Compared to thermionic emission (TE), a stronger contribution of tunneling current was observed at low temperature. The reverse bias I-V characteristics were well fitted with the thermionic field emission (TFE) in both the samples. The presence of acceptor-like adsorbates, such as O2 and H2O, modulated the surface conductive state of ZnO, thereby affecting the tunneling effect. The degree of activation/passivation of acceptor-like adsorbates might be different in both the samples owing to their different surface morphologies and surface defects (e.g., oxygen vacancies).
 Keywords
Bulk ZnO;Current transport;Tunneling current;
 Language
English
 Cited by
1.
Correlation between the Annealing Effect and the Electrical Characteristics of the Depletion Region in ZnO, SnO2and ZTO Films, Transactions on Electrical and Electronic Materials, 2016, 17, 2, 104  crossref(new windwow)
2.
Tuning the properties of ALD-ZnO-based rectifying structures by thin dielectric film insertion – Modeling and experimental studies, Journal of Alloys and Compounds, 2017, 693, 1164  crossref(new windwow)
 References
1.
S. Pearton, D. Norton, K. Ip, Y. Heo, and T. Steiner, Prog. Mater. Sci., 50, 293 (2005). [DOI: http://dx.doi.org/10.1016/j.pmatsci.2004.04.001] crossref(new window)

2.
T. Deguchi, K. Sekiguchi, A. Nakamura, T. Sota, R. Matsuo, S. Chichibu, and S. Nakamura, Jpn. J. Appl. Phys., 38, L914 (1999). [DOI: http://dx.doi.org/10.1143/JJAP.38.L914] crossref(new window)

3.
F. Bernardini and V. Fiorentini, Phys. Rev. B, 56, 16 (1997. [DOI: http://dx.doi.org/10.1103/PhysRevB.56.R10024] crossref(new window)

4.
H. Huang, C. Kuo, C. Chang, Y. Lin, T. Lu, L. Tu, and W. Hsieh, J. Electrochem. Soc., 159, H290 (2012). [DOI: http://dx.doi.org/10.1149/2.080203jes] crossref(new window)

5.
W.Mtangi, F. Auret, C. Nyamhere, P. Rensburg, M. Diale, and A. Chawanda, Physica B, 404, 1092 (2009). [DOI: http://dx.doi.org/10.1016/j.physb.2008.11.022] crossref(new window)

6.
K. Sarpatwari, O. Awadelkarim, M. Allen, S. Durbin, and S. Mohney, Appl. Phys. Lett., 94, 242110 (2009). [DOI: http://dx.doi.org/10.1063/1.3156031] crossref(new window)

7.
A. Lajn, H. Wenckstern, Z. Zhang, C. Czekalla, G. Biehne, J. Lenzner, H. Hochmuth, M. Lorenz, M. Grundmann, S. Wickert, C. Vogt, and R. Denecke, J. Vac. Sci. Technol. B, 27, 1769 (2009). [DOI: http://dx.doi.org/10.1116/1.3086718] crossref(new window)

8.
D. Somvanshi and S. Jit, IEEE Electron Dev. Lett., 34, 1238 (2013). [DOI: http://dx.doi.org/10.1109/LED.2013.2278738] crossref(new window)

9.
K. Suzue, S. Mohammad, Z. Fan, W. Kim, O. Aktas, A. Botchkarev, and H. Morkoç, J. Appl. Phys., 80, 4467 (1996). [DOI: http://dx.doi.org/10.1063/1.363408] crossref(new window)

10.
D. Yan, J. Jiao, J. Ren, G. Yang, and. X. Gu, J. Appl. Phys., 114, 144511 (2013). [DOI: http://dx.doi.org/10.1063/1.4824296] crossref(new window)

11.
H. Benmaza, B. Akkal, M. Anani, H. Abid, Z. Bensaad, and J. Bluet, Mater. Chem. Phys., 112, 63 (2008). [DOI: http://dx.doi.org/10.1016/j.matchemphys.2008.05.037] crossref(new window)

12.
O. Schmidt, A. Geis, P. Kiesel, C. Walle, N. Johnson, A. Bakin, A. Wagg, and G. Dohler, Superlattices Microstrut., 39, 8 (2006). [DOI: http://dx.doi.org/10.1016/j.spmi.2005.08.056] crossref(new window)

13.
M. Allen, X. Weng, J. Redwing, K. Sarpatwari, S. Mohney, H. Wenckstern, M. Grundmann, and S. Durbin, IEEE Trans. Electron Devices, 56, 2160 (2009). [DOI: http://dx.doi.org/10.1109/TED.2009.2026393] crossref(new window)

14.
S. Sze, Physics of Semiconductor Devices (Wiley, New York, 1981).

15.
R. Tung, Mater. Sci. Eng. R, 35, 1 (2001). [DOI: http://dx.doi.org/10.1016/S0927-796X(01)00037-7] crossref(new window)

16.
W. Mönch, J. Vac. Sci. Technol. B, 17, 1867 (1999). [DOI: http://dx.doi.org/10.1116/1.590839] crossref(new window)

17.
R. Schmitsdorf, T. Kampen, and W. Monch, J. Vac. Sci. Technol. B, 15, 1221 (1997). [DOI: http://dx.doi.org/10.1116/1.589442] crossref(new window)

18.
E. Rhoderick and R. Williams, Metal-Semiconductor Contacts (Oxford Science, Oxford, 1988)

19.
H. Cao, J. Xu, D. Zhang, S. Chang, S. Ho, E. Seelig, X. Liu, and R. Chang, Phys. Rev. Lett., 84, 5584 (2000). [DOI: http://dx.doi.org/10.1103/PhysRevLett.84.5584] crossref(new window)

20.
A. Yu, Solid State Electron., 13, 239 (1970). [DOI: http://dx.doi. org/10.1016/0038-1101(70)90056-0] crossref(new window)

21.
S. Das, J. Choi, J. Kar, K. Moon, T. Lee, and J. Myoung, Appl. Phys. Lett., 96, 092111 (2010). [DOI: http://dx.doi.org/10.1063/1.3339883] crossref(new window)

22.
E. Gür, S. Tüzemen, B. Kiliç, and C. Coşkun, J. Phys.: Condens. Matter., 19, 196206 (2007). [DOI: http://dx.doi.org/10.1088/0953-8984/19/19/196206] crossref(new window)

23.
F. Padovani and R. Stratton, Solid State Electron., 9, 695 (1966). [DOI: http://dx.doi.org/10.1016/0038-1101(66)90097-9] crossref(new window)

24.
K. Çınar, N. Yıldırım, C. Coşkun, and A. Turut, J. Appl. Phys., 106, 073717 (2009). [DOI: http://dx.doi.org/10.1063/1.3236647] crossref(new window)