Advanced SearchSearch Tips
Organic Bistable Switching Memory Devices with MeH-PPV and Graphene Oxide Composite
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Organic Bistable Switching Memory Devices with MeH-PPV and Graphene Oxide Composite
Senthilkumar, V.; Kim, Yong Soo;
  PDF(new window)
We have reported about bipolar resistive switching effect on Poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene]:Graphene oxide composite films, which are sandwiched between aluminum and indium tin oxide electrodes. In this case, I-V sweep curve showed a hysteretic behavior, which varied according to the polarity of the applied voltage bias. The device exhibited excellent switching characteristics, with the ON/OFF ratio being approximately two orders in magnitude. The device had good endurance (105 cycles without degradation) and long retention time (5 × 103 s) at room temperature. The bistable switching behavior varied according to the trapping and de-trapping of charges on GO sites; the carrier transport was described using the space-charge-limited current (SCLC) model.
Polymer composite;Spin coating;Resistive memory;Retention;Endurance;
 Cited by
The spectrochemical behavior of composites based on poly (para-phenylenevinylene), reduced graphene oxide and pyrene, Optical Materials, 2017, 72, 140  crossref(new windwow)
Y. Park, D. Gupta, C. Lee, and Y. Hong, Org. Electron., 13, 2887 (2012). [DOI:] crossref(new window)

T. L. Choi, K. H. Lee, W. J. Woo, S. Lee, T. W. Lee, and M. Y. Chae, J. Am. Chem Soc., 129, 9842 (2007). [DOI:] crossref(new window)

J. Ouyang, C. W. Chu, C. R. Szmanda, L. Ma, and Y. Yang, Nat. Mater., 3, 918 (2004). [DOI:] crossref(new window)

T. W. Kim, Y. Yang, F. Li, and W. L. Kwan, NPG Asia Mater., 4, e18 (2012). [DOI:] crossref(new window)

G. Liu, X. Zhuang, Y. Chen, B. Zhang, J. Zhu, C. X. Zhu, K. G. Neoh, and E. T. Kang, Appl. Phys. Lett., 95, 253301 (2009). [DOI:] crossref(new window)

X. D. Zhuang, Y. Chen, G. Liu, P. P. Li, C. X. Zhu, E. T. Kan, K. G. Noeh, B. Zhang, J. H. Jhu, and Y. X. Li, Adv. Mater., 22, 1731 (2010). [DOI:] crossref(new window)

C. Wu, F. Li, Y. Zhang, T. Guo, and T. Chen, Appl. Phys. Lett., 99, 042108 (2011). [DOI:] crossref(new window)

F. Li, D. I. Son, H. M. Cha, S. M. Seo, B. J. Kim, H. J. Kim, J. H. Jung, and T. W. Kim, Appl. Phys. Lett., 90, 222109 (2007). [DOI:] crossref(new window)

S. Patil, Q. Lai, F. Marchioni, M. Jung, Z. Zhu, Y. Chen, and F. Wudl, J. Mater. Chem., 16, 4160 (2006). [DOI:] crossref(new window)

D. I. Son, T. W. Kim, J. H. Shim, J. H. Jung, D. U. Lee, J. M. Lee, W. I. Park, and W. K. Choi, Nano Lett., 10, 2441 (2010). [DOI:] crossref(new window)

D. I. Son, D. H. Park, W. K. Choi, S. H. Cho, W. T. Kim, and T. W. Kim, Nanotechnology, 20, 195203 (2009). [DOI:] crossref(new window)

CH.V.V. Ramana, M. K. Moodely, V. Kannan, A. Maity, J. Jayaramudu, and W. Clarke, Sensors and Actuators B, 161, 684 (2012). [DOI:] crossref(new window)

T. Y. Chang, Y. W. Cheng, and P. T. Lee, Appl. Phys. Lett., 96, 043309 (2010). [DOI:] crossref(new window)

G. T. Wright, Nature, 182, 1296 (1958). [DOI:] crossref(new window)

D. S. Shang, Q. Wang, L. D. Chen, R. Dong, X. M. Li, and Q. Q. Zhang, Phys. Rev. B, 73, 245427 (2006). [DOI:] crossref(new window)