Advanced SearchSearch Tips
FinFET SRAM Cells with Asymmetrical Bitline Access Transistors for Enhanced Read Stability
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
FinFET SRAM Cells with Asymmetrical Bitline Access Transistors for Enhanced Read Stability
Salahuddin, Shairfe Muhammad; Kursun, Volkan; Jiao, Hailong;
  PDF(new window)
Degraded data stability, weaker write ability, and increased leakage power consumption are the primary concerns in scaled static random-access memory (SRAM) circuits. Two new SRAM cells are proposed in this paper for achieving enhanced read data stability and lower leakage power consumption in memory circuits. The bitline access transistors are asymmetrically gate-underlapped in the proposed SRAM cells. The strengths of the asymmetric bitline access transistors are weakened during read operations and enhanced during write operations, as the direction of current flow is reversed. With the proposed hybrid asymmetric SRAM cells, the read data stability is enhanced by up to 71.6% and leakage power consumption is suppressed up to 15.5%, while displaying similar write voltage margin and maintaining identical silicon area as compared to the conventional memory cells in a 15 nm FinFET technology.
FinFET devices;Underlap;SRAM cell;Memory cache;Data stability;Write voltage margin;
 Cited by
A near-threshold 10T differential SRAM cell with high read and write margins for tri-gated FinFET technology, Integration, the VLSI Journal, 2017  crossref(new windwow)
S. A. Tawfik and V. Kursun, J. Low Power Electronics, 5, 497 (2009). [DOI:] crossref(new window)

S. A. Tawfik, Z. Liu, and V. Kursun, 2007 Independent-gate and tied-gate FinFET SRAM circuits: design guidelines for reduced area and enhanced stability IEEE Int. Conf. Microelectronics, 171 (2007). [DOI:]

S. A. Tawfik and V. Kursun, 2008 Work-function engineering for reduced power and higher integration density: an alternative to sizing for stability in FinFET memory circuits IEEE Int. Symp. Circuits and Systems, 788 (2008). [DOI:] crossref(new window)

S. A. Tawfik and V. Kursun, Low-power and robust six-FinFET memory cell using selective gate-drain/source overlap engineering IEEE Int. Symp. on Integrated Circuits, 244 (2009).

Process integration, devices, and structures (PIDS-2010). The International Technology Roadmap for Semiconductors (

Atlas user manual. Devedit user manual. Clever user manual.

S. Yu, Y. Zhao, G. Du, J. Kang, R. Han, and X. Liu, Semiconductor Science and Technology, 24, 025005 (2009). [DOI:] crossref(new window)

K. Endo, S. O'uchi, Y. Ishikawa, Y. Liu, T. Matsukawa, M. Masahara, K. Sakamoto, J. Tsukada, K. Ishii, H. Yamauchi, and E. Suzuki, Applied Physics Express, 2, 054502 (2009). [DOI:] crossref(new window)

R. A. Kranti and G. A. Armstrong, Semiconductor Science and Technology, 23, 075049 (2008). [DOI:] crossref(new window)

D. Qing and L. Yinyin, Journal of Semiconductors, 34, 045008 (2013). crossref(new window)

B. Na and L. Baitao, Journal of Semiconductors, 33, 065008 (2012). crossref(new window)

R. K. Singh, N. K. Shukla, and M. Pattanaik, Journal of Semiconductors, 33, 055001 (2012). crossref(new window)

A. Goel, IEEE T. Electron Devices, 58, 296 (2011). [DOI:] crossref(new window)

A. Kranti and G. A. Armstrong, J. Microelectronic Engineering, 84, 2775 (2007). [DOI:] crossref(new window)

D. Kadosh, M. I. Gradner, M. Duane, J. D. Check, F. N. Hause, R. Dawson, and B. T. Moore, Asymmetrical transistor structure US Patent 6104064 (2000).

T. Horiuchi, T. Homma, Y. Murao, and K. Okumura, IEEE T. Electron Devices, 41, 186 (1994). [DOI:] crossref(new window)

J. Yang, H. R. Harris, M. M. Hussain, B. Sassman, H. Tseng, and R. Jammy, IEEE Symp. VLSI Technology, Systems, and Applications, 20 (2008).

C. H. Lin, IEEE Int. Symp. VLSI Technology, 15 (2012).

N. Gierczynski, B. Borot, N. Planes, and H. Brut, IEEE Int. Conf. Microelectronic Test Structures, 97 (2007).

B. Black, IEEE/ACM Int. Symp. Microarchitecture, 469-479 (2006).

S. A. Tawfik and V. Kursun, IEEE T. Electron Devices, 55, 60 (2008). [DOI:] crossref(new window)

J. G. Fossum, M. M. Chowdhury, V. P. Trivedi, T. J. King, and Y. K. Choi, IEEE Int. Electron Devices Meeting, 679 (2003).

J. Yang, P. M. Zeitzoff, and H. Tseng, IEEE T. Electron Devices, 54, 1464 (2007). [DOI:] crossref(new window)

P. A. Stolk, IEEE Int. Electron Devices Meeting, 215 (2001).

F. Boeuf, IEEE Int. Electron Devices Meeting, 637 (2001).

B. Yu, IEEE Int. Electron Devices Meeting, 251 (2002).

N. Miura, Y. Domae, T. Sakata, M. Watanabe, T. Okamura, T. Chiba, K. Fukuda, and J. Ida, IEEE Int. SOI Conference, 176 (2005).

H. Zhu and V. Kursun, IEEE T. Circuits and Systems I, 61, 2013 (2014). [DOI:] crossref(new window)

Y. X. Liu, K. Endo, S. O'uchi, J. Tsukada, H. Yamauchi, Y. Ishikawa, K. Sakamoto, T. Matsukawa, M. Masahara, T. Kamei, T. Hayashida, and Ogura, European Solid-8 Device Research Conference, 202 (2010).

Y. Wang, P. Huang, Z. Xin, L. Zeng, X. Liu, G. Du, and J. Kang, Japanese Journal of Applied Physics, 53, 04EC05 (2014). [DOI:] crossref(new window)

S. M. Salahuddin, J. Hailong, and V. Kursun, IEEE Int. Symp. Quality Electronic Design, 353 (2013).

S. M. Salahuddin, J. Hailong, and V. Kursun, IEEE Int. Symp. Circuits and Systems, 2331 (2013).

S. M. Salahuddin, J. Hailong, and V. Kursun, IEEE Int. Conf. Electron Devices and Solid-State Circuits, 1 (2013).