JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Sintering Effect on Clamping Characteristics and Pulse Aging Behavior of ESD-Sensitive V2O5/Mn3O4/Nb2O5 Codoped Zinc Oxide Varistors
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Sintering Effect on Clamping Characteristics and Pulse Aging Behavior of ESD-Sensitive V2O5/Mn3O4/Nb2O5 Codoped Zinc Oxide Varistors
Nahm, Choon-Woo;
  PDF(new window)
 Abstract
V2O5/Mn3O4/Nb2O5 codoped zinc oxide varistor ceramics were sintered at a temperature range as low as 875~950℃. The voltage clamping characteristics of V2O5/Mn3O4/Nb2O5 codoped zinc oxide varistor ceramics were investigated at a pulse current range of 1~50 A. The sintering temperature had a significant effect on clamp voltage ratio, which exhibits surge protection capabilities. The varistor ceramics sintered at 875℃ exhibited the best clamping characteristics, in which the clamp voltage ratio was 2.69 at a pulse current of 50 A. The varistor ceramics sintered at 900℃ exhibited the highest electrical stability, where = 3,824 V/cm (initial 3,909 V/cm), and E1 mA/cm2 = 27 (initial 39) after application of a pulse current of 100 A.
 Keywords
Zinc oxide;Sintering;Clamping characteristics; based varistors;
 Language
English
 Cited by
 References
1.
L. M. Levinson and H. R. Pilipp, Am. Ceram. Soc. Bull., 65, 639 (1986).

2.
T. K. Gupta, J. Am. Ceram. Soc., 73, 1817 (1990). [DOI: http://dx.doi.org/10.1111/j.1151-2916.1990.tb05232.x] crossref(new window)

3.
J. K. Tsai and T. B.Wu, J. Appl. Phys., 76, 4817 (2994). [DOI: http://dx.doi.org/10.1063/1.357254]

4.
J. K. Tsai and T. B.Wu, Mater. Lett., 26, 199 (1996). [DOI: http://dx.doi.org/10.1016/0167-577X(95)00217-0] crossref(new window)

5.
C. T. Kuo, C. S. Chen, and I. N. Lin, J. Am. Ceram. Soc., 81, 2942 (1998). [DOI: http://dx.doi.org/10.1111/j.1151-2916.1998.tb02717.x]

6.
H. H. Hng and K. M. Knowles, J. Am. Ceram. Soc., 83, 2455 (2000). [DOI: http://dx.doi.org/10.1111/j.1151-2916.2000.tb01576.x]

7.
H. H. Hng and L. Halim, Mater. Lett., 57, 1411 (2003). [DOI: http://dx.doi.org/10.1016/S0167-577X(02)00999-0] crossref(new window)

8.
H. H. Hng and P. L. Chan, Ceram. Int., 30, 1647 (2004). [DOI: http://dx.doi.org/10.1016/j.ceramint.2003.12.162] crossref(new window)

9.
C. W. Nahm, Ceram. Int., 35, 2679 (2009). [DOI: http://dx.doi.org/10.1016/j.ceramint.2009.03.011] crossref(new window)

10.
C. W. Nahm, Ceram. Int., 35, 3435 (2009). [DOI: http://dx.doi.org/10.1016/j.ceramint.2009.06.004] crossref(new window)

11.
C. W. Nahm, Ceram. Int., 36, 1109 (2010). [DOI: http://dx.doi.org/10.1016/j.ceramint.2009.12.002] crossref(new window)

12.
C. W. Nahm, J. Mater. Sci.: Mater. Electron., 22, 1010 (2011). [DOI: http://dx.doi.org/10.1007/s10854-010-0251-3] crossref(new window)

13.
C. W. Nahm, J. Am. Ceram. Soc., 94, 1305 (2011). [DOI: http://dx.doi.org/10.1111/j.1551-2916.2011.04420.x] crossref(new window)

14.
C. W. Nahm, J. Am. Ceram. Soc., 94, 2269 (2011). [DOI: http://dx.doi.org/10.1111/j.1551-2916.2011.04626.x] crossref(new window)

15.
C. W. Nahm, Mater. Sci. Semicon. Process., 16, 1308 (2013). [DOI: http://dx.doi.org/10.1016/j.mssp.2013.04.003] crossref(new window)

16.
J. C. Wurst and J. A. Nelson, J. Am. Ceram. Soc., 55, 109 (1972). [DOI: http://dx.doi.org/10.1111/j.1151-2916.1972.tb11224.x] crossref(new window)