JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Use of Hard Mask for Finer (<10 μm) Through Silicon Vias (TSVs) Etching
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Use of Hard Mask for Finer (<10 μm) Through Silicon Vias (TSVs) Etching
Choi, Somang; Hong, Sang Jeen;
  PDF(new window)
 Abstract
Through silicon via (TSV) technology holds the promise of chip-to-chip or chip-to-package interconnections for higher performance with reduced signal delay and power consumption. It includes high aspect ratio silicon etching, insulation liner deposition, and seamless metal filling. The desired etch profile should be straightforward, but high aspect ratio silicon etching is still a challenge. In this paper, we investigate the use of etch hard mask for finer TSVs etching to have clear definition of etched via pattern. Conventionally employed photoresist methods were initially evaluated as reference processes, and oxide and metal hard mask were investigated. We admit that pure metal mask is rarely employed in industry, but the etch result of metal mask support why hard mask are more realistic for finer TSV etching than conventional photoresist and oxide mask.
 Keywords
Through silicon via;Plasma etch;
 Language
English
 Cited by
 References
1.
M. J. Wang, C. Y. Hung, C. L. Kao, and P. N. Lee, IEEE ECTC, 62, 284 (2012). [DOI: http://dx.doi.org/10.1109/ECTC.2012.6248842] crossref(new window)

2.
R. Beica, DTIP. MEMS/MOEMS 2008 Symposium on, 127 (2008). [DOI: http://dx.doi.org/10.1109/DTIP.2008.47 52967]

3.
S. Ramaswami, IEEE TDMR., 9, 524 (2009). [DOI: http://dx.doi.org/10.1109/TDMR.2009.2034317]. crossref(new window)

4.
M. D. Henry and S. Walavalkar, Nanotechnology, 20, 4 (2009). [DOI: http://dx.doi.org/10.1088/0957-4484/20/25/255305] crossref(new window)

5.
I. W. Rangelow, J. Vac. Sci. Technol. A, 21, 1550 (2003). [DOI:http://dx.doi.org/10.1116/1.1580488] crossref(new window)

6.
W. L. Nicoll, IEEE TSM, 26, 500 (2013). [DOI: http://dx. doi.org/10.1109/TSM.2013.2283230] crossref(new window)

7.
Y. C. Hsin, C. C. Chen, J. H. Lau, P. J. Tzeng, S. H. Shen, Y. F. Hsu, S. C. Chen, C. Y. Wn, J. C. Chen, T. K. Ku, and M. J. Kao, IEEE ECTC, 61, 1130 (2011). [DOI: http://dx.doi.org/10.1109/ECTC.2011.5898652] crossref(new window)

8.
V. S. Rao, EPTC, 11, 431 (2009). [DOI: http://dx.doi.org/10.1109/EPTC.2009.5416509] crossref(new window)

9.
S. Jensen and O. Hansen, Proc. SPIE, 5342 (Micromachining and Microfabrication Process Technology IX), 111 (2004). [DOI: http://dx.doi.org/10.1117/12.524461] crossref(new window)

10.
B. Wu, A. Kumar, and S. Pamarthy, J. Appl. Phys., 108, 051101 (2010). [DOI: http://dx.doi.org/10.1063/1.3474652] crossref(new window)

11.
R. Abdolvand and F. Ayazi, Sensors and Actuators A, 144, 109 (2008) [DOI: http://dx.doi.org/10.1016/j.sna.2007.12.026] crossref(new window)

12.
E. S. G. Shaqfeh and C. W. Jurgensen, J. Appl Phys., 66, 4664 (1989). [DOI: http://dx.doi.org/10.1063/1.343823] crossref(new window)

13.
P. Dixit and J. Miao, J. Electrochem. Soc., 155, H85 (2008). [DOI: http://dx.doi.org/10.1149/1.2814081] crossref(new window)

14.
K. P. Giapis, G. R. Scheller, R. A. Gottscho, W. S. Hobson, and Y. H. Lee, J. Appl. Phys., 57, 983 (1990). [DOI: http://dx.doi.org/10.1063/1.103532] crossref(new window)

15.
B. Abraham-Shrauner, C. D. Wang, J. Electrochem. Soc., 143, 2, 672 (1996). [DOI: http://dx.doi.org/10.1149/1.1836498] crossref(new window)

16.
J. C. Arnold and H. H. Sawinl, J. Appl. Phys., 70, 5314 (1991). [DOI: http://dx.doi.org/10.1063/1.350241] crossref(new window)

17.
P. Sigmund, Journal of Materials Science, 8, 1545 (1973). [DOI: http://dx.doi.org/10.1007/BF00754888] crossref(new window)

18.
J. H. Min, G. R. Lee, J. K. Lee, C. K. Kim, and S. H. Moon, J. Vac. Sci. Technol. B, 22, 893 (2004). [DOI: http://dx.doi.org/10.1116/1.1695338] crossref(new window)

19.
R. Nagarajan, K. Prasad, L. Ebin, and B. Narayanan, Sens. Actuators A, 139, 323 (2007). [DOI: http://dx.doi.org/10.1016/j.sna.2007.01.014] crossref(new window)

20.
R. A. Gottscho, C. W. Jurgensen, and D. J. Vitkavage, J. Vac. Sci. Technol. B, 10, 2133 (1992). [DOI: http://dx.doi.org/10.1116/1.586180] crossref(new window)

21.
S. Kang, B. D. Vogt, W. L. Wu, V. M. Prabhu, D. L. VanderHart, A. Rao, and E. K. Lin, Macromolecules, 40, 1497 (2007). [DOI: http://dx. doi.org/10.1021/ma062579c] crossref(new window)

22.
T. Hamed, J. Abdolhosien, R. R. Mohammad, M. S. Meisam, and H. Navid, Chemical Engineering Journal, 226, 384 (2013). [DOI: http://dx.doi.org/10.1016/j.cej.2013.04.035] crossref(new window)

23.
D. Zhang, S. Rauf, and T. Sparks, IEEE TPS, 30, 114 (2002). [DOI: http://dx.doi.org/10.1109/TPS.2002.1003950] crossref(new window)

24.
F. H. Dill, W. P. Hornberger, Hauge, S. Peter, Shaw, M. Jane, IEEE T-ED, 22, 445 (1975). [DOI: http://dx.doi.org/10.1109/T-ED.1975.18159] crossref(new window)

25.
G. E. Flores, W. W. Flack, and E. Tai, Proc. SPIE2195, Advances in Resist Technology and Processing XI, 734 (1994). [DOI: http://dx.doi.org/10.1117/12.175386] crossref(new window)

26.
A. D. Bailey III and R. A. Gottscho, Jpn. J. Appl. Phys., 34, 2083 (1995). [DOI: http://dx.doi.org/10.1143/JJAP.34.2083] crossref(new window)

27.
P. Dixit and J. Miao, J. Phys. Conf. Ser., 34, 577 (2006). [DOI: http://dx.doi.org/10.1088/1742-6596/34/1/095] crossref(new window)

28.
J. W. Choi, J. Micromech Microeng., 23, 7 (2013). [DOI: http://dx.doi.org/10.1088/0960-1317/23/6/065005] crossref(new window)

29.
L. Sainiemi and S. Franssila, J. Vac. Sci. Technol. B, 25, 801 (2007). [DOI: http://dx.doi.org/10.1116/1.2734157] crossref(new window)