JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Comparison of Partial Discharge Characteristics in SF6 Gas Under AC and DC
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Comparison of Partial Discharge Characteristics in SF6 Gas Under AC and DC
Jo, Hyang-Eun; Wang, Guoming; Kim, Sun-Jae; Kil, Gyung-Suk;
  PDF(new window)
 Abstract
In this paper, parameters related with partial discharge (PD) were analyzed in SF6 gas under AC and DC voltages. Three electrode systems (protrusion on conductor, protrusion on enclosure, and free particle) were fabricated to simulate PD defects in a gas-insulated switchgear (GIS). All electrode systems were filled with SF6 gas at 0.5 MPa. PD pulses were detected using an oscilloscope and a data acquisition (DAQ) based on IEC 60270. To analyze the PD characteristics under AC and DC voltages, parameters such as discharge inception voltage (DIV), discharge extinction voltage (DEV), pulse magnitude, repetition rate, and T-F map were compared. From the experimental results, PD was revealed to have different characteristics under AC and DC, and these results may be useful for diagnosis of power facilities operated under HVDC.
 Keywords
Partial discharge;AC and DC;IEC 60270;Repetition rate;T-F map;
 Language
English
 Cited by
1.
Study on the characteristic decomposition components of air-insulated switchgear cabinet under partial discharge, AIP Advances, 2016, 6, 7, 075106  crossref(new windwow)
 References
1.
R. Piccin, A. Mor, P. Morshuis, A. Girodet, and J. Smit, IEEE Trans. Dielectr. Electr. Insul., 22, 218 (2015). [DOI: http://dx.doi.org/10.1109/ TDEI. 2014.004711] crossref(new window)

2.
J. Y. Shin, H. D. Park, J. Y. Lee, and J. W. Hong, Trans. Electr. Electron. Mater., 11, 42 (2010). [DOI: http://dx.doi.org/10.4313/TEEM.2010.11.1.042] crossref(new window)

3.
J. Y. Shin, Y. S. Lee, and J. W. Hong, Trans. Electr. Electron. Mater., 14, 211 (2013). [DOI: http://dx.doi.org/10.4313/TEEM.2013.14.4. 211] crossref(new window)

4.
G. S. Kil, I. K. Kim, D. W. Park, S. Y. Choi, and C. Y. Park, Curr. Appl. Phys., 9, 296 (2009). [DOI: http://dx.doi.org/10.1016/j.cap.2008.01.018] crossref(new window)

5.
S. M. Markalous, S. Tenbohlen, and K. Feser, IEEE Trans. Dielectr. Electr. Insul., 15, 1576 (2008). [DOI: http://dx.doi.org/10.1109/TDEI.2008.4712660] crossref(new window)

6.
S. S. Win, S. Coenen, and S. Tenbohlen, Proc. of the 18th International Symposium on High Voltage Engineering (Seoul, Korea 2013) p.781.

7.
A. Cavallini, G. C. Montanari, M. Tozzi, and X. L. Chen, IEEE Trans. Dielectr. Electr. Insul., 18, 275 (2011). [DOI: http://dx.doi.org/10.1109/TDEI. 2011.5704519] crossref(new window)

8.
U. Schichler, M. Kuschel, and J. Gorablenkow, Proc. of the 18th International Symposium on High Voltage Engineering (Seoul, Korea, 2013) p.2313.

9.
P. Bresesti, W. L. Kling, R. L. Hendriks, and R. Vailati, IEEE, Trans. Energy. Convers., 22, 37 (2007). [DOI: http://dx.doi.org/10.1109/TEC.2006.889624] crossref(new window)

10.
S. Meijer, E. Gulski, J. J. Smit, and A. Girodet, Proc. of the Conference on Electrical Insulation and Dielectric Phenomena (TX, Austin, 1999) p.424.

11.
S. J. Kim, H. E. Jo, G. W. Jeong, G. S. Kil, and J. R. Jung, Proc. of the International Conference on Condition Monitoring and Diagnosis (Jeju, Korea) p.557.

12.
A. Cavallini, A. Contin, G. C. Montanari, and F. Puletti, IEEE Trans. Dielectr. Electr. Insul., 10, 216 (2003). [DOI: http://dx.doi.org/10.1109/TDEI.2003.1194102] crossref(new window)