Advanced SearchSearch Tips
Thermoelectric Properties of n-Type Half-Heusler Compounds Synthesized by the Induction Melting Method
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Thermoelectric Properties of n-Type Half-Heusler Compounds Synthesized by the Induction Melting Method
Du, Nguyen Van; Lee, Soonil; Seo, Won-Seon; Dat, Nguyen Minh; Meang, Eun-Ji; Lim, Chang-Hyun; Rahman, Jamil Ur; Kim, Myong Ho;
  PDF(new window)
The n -type Hf0.25Zr0.25Ti0.5NiSn0.998Sb0.002 Half-Heusler (HH) alloy composition was prepared by using the induction melting method in addition to the mechanical grinding, annealing, and spark plasma sintering processes. Analysis of X-ray diffraction (XRD) results indicated the formation of a pure phase HH structured compound. The electrical and thermal properties at temperatures ranging from room temperature to 718 K were investigated. The electrical conductivity increased with increasing temperatures and demonstrated nondegenerate semiconducting behavior, and a large reduction in the thermal conductivity to the value of 2.5 W/mK at room temperature was observed. With the power factor and thermal conductivity, the dimensionless figure of merit was increased with temperature and measured at 0.94 at 718 K for the compound synthesized by the induction melting process.
Thermoelectric;Half-Heusler;Induction melting;Thermal property;Charge transport;
 Cited by
Structural, electronic, mechanical, and thermoelectric properties of a novel half Heusler compound HfPtPb, Journal of Applied Physics, 2017, 122, 4, 045110  crossref(new windwow)
F. J. Disalvo, Science, 285, 703 (1999). [DOI:] crossref(new window)

Z. C. Cai, P. Fan, Z. H. Zheng, P. J. Liu, T. B. Chen, J. T. Luo, G. X. Liang, and D. P. Zhang, Appl. Surf. Sci., 280, 225 (2013). [DOI:] crossref(new window)

B. C. Sales, D. Mandrus, R. K. Williams, Science, 272, 1325 (1996). [DOI:] crossref(new window)

M. Scheele, N. Oeschler, K. Meier, A. Kornowski, C. Klinke, and H. Weller, Adv. Funct. Mater., 19, 3476 (2009). [DOI:] crossref(new window)

J. J. Shen, L. P. Hu, T. J. Zhu, and X. B. Zhao, Appl. Phys. Lett., 99, 124102 (2011). [DOI:] crossref(new window)

V. Kuznetsov, L. Kuznetsova, A. Kaliazin, and D. Rowe, J. Mater. Sci., 37, 2893 (2002). [DOI:] crossref(new window)

Y. Gelbstein, Y. Rosenberg, Y. Sadia, and M. Dariel, J. Phys. Chem. C, 114, 13126 (2010). [DOI:] crossref(new window)

K. Biswas, J. He, G. Wang, S. H. Lo, C. Uher, V. P. Dravid, and M. G. Kanatzidis, Energy Environ. Sci., 4, 4675 (2011). [DOI:] crossref(new window)

S. N. Girard, J. He, X. Zhou, D. Shoemaker, C. M. Jaworski, C. Uher, V. P. Dravid, J. P. Heremans, and M. G. Kanatzidis, J. Am. Chem. Soc., 133, 16588 (2011). [DOI:] crossref(new window)

S. Ballikaya, N. Uzar, S. Yildirim, J. R. Salvador, and C. Uher, J. Solid State Chem., 193, 31 (2012). [DOI:] crossref(new window)

G. Rogl, A. Grytsiv, M. Falmbigl, E. Bauer, C. Mangler, C. Rentenberger, M. Zehetbauer, and P. Rogl, Acta Mater., 60, 4487 (2012). [DOI:] crossref(new window)

S. Sakurada and N. Shutoh, Appl. Phys. Lett., 86, 082105 (2005). [DOI:] crossref(new window)

N. F. Mott, Metal-Insulator Transitions (Taylor and Francis, London, 1974).

M. Schwall and B. Balke, Phys. Chem. Phys., 15, 1870 (2013).

G. Wiedermann and R. Franz, Ann. Phys. Lpz., 89, 497 (1853).

N. Shutoh and S. Sakurada, J. Alloys Compd., 389, 204 (2005). [DOI:] crossref(new window)