Advanced SearchSearch Tips
Highly Thermal Conductive Alumina Plate/Epoxy Composite for Electronic Packaging
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Highly Thermal Conductive Alumina Plate/Epoxy Composite for Electronic Packaging
Jeong, Un Seong; Lee, Yoon Joo; Shin, Dong Geun; Lim, Hyung Mi; Mun, So Youn; Kwon, Woo Teck; Kim, Soo Ryong; Kim, Young Hee; Shim, Kwang Bo;
  PDF(new window)
In this study, alumina plates 9~25 μm in size were used as thermal fillers, and epoxy resin was used as a polymer matrix. Oriented alumina plate/epoxy composites were prepared using a rolling method. The effect of ordering alumina plates increased with alumina plate size. The thermal conductivity and flexural strength of the composites were investigated. The horizontal thermal conductivity of the oriented composite was significantly higher than the vertical thermal conductivity. The horizontal thermal conductivity of the 75 wt% alumina content was 8.78 W/mk, although the vertical thermal conductivity was 1.04 W/mk. Ordering of the alumina plate using a rolling method significantly improved the thermal conductivity in the horizontal direction. The flexural strengths of the ordered alumina/epoxy composites prepared at different curing temperatures were measured.
Alumina-epoxy composite;Ordering;Thermal property;
 Cited by
Nacre-inspired composite prepared by rolling method I: Effect of particle orientation on deformation behavior, Composite Structures, 2017, 182, 549  crossref(new windwow)
J. W. Zha, T. X. Zhu, Y. H. Wu, S. J. Wang, R.K.Y. Li, and Z. M. Dang, J. Materials. Chem. C, 3, 7195 (2015). [DOI:] crossref(new window)

M. Kozako, Y. Okazaki, and M. Hikita, IEEE Solid Dielectrics, ICSD, 1 (2010).

C. Ocando, A. Tercjak, and I. Mondragon, European Polymer J, 47, 1240 (2011). [DOI:] crossref(new window)

F. Hojo, H. Kagawa, and Y. Takezawa, J. Ceramic. Soci. Japan, 119, 601 (2011). [DOI:] crossref(new window)

C. Ocando, A. Tercjak, and I. Mondragon, Comp. Sci. Tech., 70, 1106 (2010). [DOI:] crossref(new window)

F. Song, A. K. Soh, and Y. L. Bai, Biomaterials, 24, 3623 (2003). [DOI:] crossref(new window)

A. P. Jackson, J.F.V. Vincent, R.M. Turner, Proc. R, Soc, London, B Biol. Sci., 234, 415 (1988). [DOI:] crossref(new window)

A. G. Checa, J.H.E. Cartwright, and M. G. Willinger, J. Struct. Bio., 176, 330 (2011). [DOI:] crossref(new window)

N. A. Kotov, I. Dekany, and J. H. Fendler, J. Phys. Chem., 99, 13065 (1995). [DOI:] crossref(new window)

Z. Tang, N. A. Kotov, S. Magonov, and B. Ozturk, Nat. Mater., 2, 413 (2003). [DOI:] crossref(new window)

P. Podsiadlo, Z. Tang, B. S. Shim, and N. A. Kotov, Nano Lett., 7, 1224 (2007). [DOI:] crossref(new window)

R. Z. Wang, Z. Suo, A. G. Evans, N. Yao, and I. A. Aksay, J. Mater. Res., 16, 2485 (2001). [DOI:] crossref(new window)

J. Y. Sun and B. Bhushan, RSC Advances, 2, 7617 (2012). [DOI:] crossref(new window)

B. Y. Kim, Y. J. Lee, S. R. Kim, D. G. Shin, W. T. Kwon, D. K. Choi, and Y.H. Kim, J. Korean. Ceram. Soc., 52, 248 (2015). crossref(new window)

S. Y. Mun, H. I. Lim, and D. J. Lee, Theor. Chim. Acta, 619, 16 (2015). [DOI:] crossref(new window)