JOURNAL BROWSE
Search
Advanced SearchSearch Tips
First-principles Predictions of Structures and Piezoelectric Properties of PbTiO3 Single Crystal
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
First-principles Predictions of Structures and Piezoelectric Properties of PbTiO3 Single Crystal
Kim, Min Chan; Lee, Sang Goo; Joh, Cheeyoung; Seo, Hee Seon;
  PDF(new window)
 Abstract
Using the various exchange-correlation functionals, such as LDA, GGA-PBE, GGA-PBEsol and GGA-AM05 functionals, first principle studies were conducted to determine the structures of paraelectric and ferroelectric PbTiO3. Based on the structures determined by the various functionals, the piezoelectric properties of PbTiO3 are predicted under the density-functional perturbation theory (DFPT). The present prediction with the various GGA functionals are closer to the experimental findings compared to the LDA values. The present DFT calculations using the GGA-PBEsol functional estimate the experimental data more reasonably than the conventional LDA and GGA fucntionals. The GGA-AM05 functional also predicts the experimental data as well as the GGA-PBEsol. The piezoelectric tensor calculated with PBEsol is relatively insensitive to pressure.
 Keywords
First principle calculation;Piezoelectricity;Lead titanate;
 Language
English
 Cited by
 References
1.
W. Kohn and L. J. Sham, Phys. Rev., 140, A1133 (1965). [DOI: http://dx.doi.org/10.1103/PhysRev.140.A1133] crossref(new window)

2.
R. G. Parr and W. Yang, Density-Functional Theory of Atoms and Molecules (Oxford University Press, 1989).

3.
S. Baroni, P. Giannozzi, and A. Testa, Phys. Rev. Lett., 58, 1861 (1987). [DOI: http://dx.doi.org/10.1103/PhysRevLett.58.1861] crossref(new window)

4.
J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett., 77, 3865 (1996). [DOI: http://dx.doi.org/10.1103/PhysRevLett.77.3865] crossref(new window)

5.
J. P. Perdew, A. Ruzsinszky, G. I. Csonka, O. A. Vydrov, G. E. Scuseria, L. A. Constantin, X. Zhou, and K. Burke, Phys. Rev. Lett., 100, 136406 (2008). [DOI: http://dx.doi.org/10.1103/PhysRevLett.100.136406] crossref(new window)

6.
A. E. Mattsson, R. Armiento R, J. Paier, G. Kresse, J. M. Wills, and T. R. Mattsson, J. Chem. Phys., 128, 084714 (2008). [DOI: http://dx.doi.org/10.1063/1.2835596] crossref(new window)

7.
G. Kresse and J. Furthmüller, Comput. Mat. Sci., 6, 15 (1996). [DOI: http://dx.doi.org/10.1016/0927-0256(96)00008-0] crossref(new window)

8.
G. Kresse and J. Furthmüller, Phys. Rev. B, 54, 11169 (1996). [DOI: http://dx.doi.org/10.1103/PhysRevB.54.11169] crossref(new window)

9.
S. A. Mabud and A.M. Glazer, J. App. Cryst., 12, 49 (1979). [DOI: http://dx.doi.org/10.1107/S0021889879011754] crossref(new window)

10.
F. Joan and G. Shirane, Ferroelectric Crystals (Pergamon Press Inc., New York, 1962).

11.
F. D. Murnaghan, Proc. Natl. Acad. Sci. U.S.A., 30, 244 (1944). [DOI: http://dx.doi.org/10.1073/pnas.30.9.244] crossref(new window)

12.
Z. Li, M. Crimsditch, X. Xu, and S. K. Chan, Ferroelectrics, 141, 313 (1993). [DOI: http://dx.doi.org/10.1080/00150199308223459] crossref(new window)

13.
A. G. Kalinichev, J. D. Bass, B. N. Sun, and D. A. Payne, J. Mater. Res., 12, 2623 (1997). [DOI: http://dx.doi.org/10.1557/JMR.1997.0349] crossref(new window)

14.
S. Ikegami, I. Ueda, and T. Nagata, J. Acoust. Soc. Am., 50, 1060 (1971). [DOI: http://dx.doi.org/10.1121/1.1912729] crossref(new window)