JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Investigation of the Contact Resistance Between Amorphous Silicon-Zinc-Tin-Oxide Thin Film Transistors and Different Electrodes Using the Transmission Line Method
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Investigation of the Contact Resistance Between Amorphous Silicon-Zinc-Tin-Oxide Thin Film Transistors and Different Electrodes Using the Transmission Line Method
Lee, Byeong Hyeon; Han, Sangmin; Lee, Sang Yeol;
  PDF(new window)
 Abstract
A thin film transistor (TFT) has been fabricated using the amorphous 0.5 wt% Si doped zinc-tin-oxide (a-0.5 SZTO) with different electrodes made of either aluminium (Al) or titanium/aluminium(Ti/Al). Contact resistance and total channel resistance of a-0.5SZTO TFTs have been investigated and compared using the transmission line method (TLM). We measured the total resistance of 1.0×102 Ω/cm using Ti/Al electrodes. This result is due to Ti, which is a material known for its adhesion layer. We found that the Ti/Al electrode showed better contact characteristics between the channel and electrodes compared with that made of Al only. The former showed a less contact and total resistance. We achieved high performance of the TFTs characteristic, such as Vth of 2.6 V, field effect mobility of 20.1 cm2 V−1s−1, S.S of 0.9 Vdecade−1, and on/off current ratio of 9.7×106 A. It was demonstrated that the Ti/Al electrodes improved performance of TFTs due to enhanced contact resistance.
 Keywords
Transmission line method;contact resistance;Ti/Al electrodes;
 Language
English
 Cited by
 References
1.
K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, Nature (London), 432, 488 (2004). [DOI: http://dx.doi.org/10.1038/nature03090] crossref(new window)

2.
H. Yabuta, M. Sano, K. Abe, T. Aiba, T. Den, H. Kumomi, K. Nomura, T. Kamiya, and H. Hosono, Appl. Phys. Lett., 89, 112123 (2006). [DOI: http://dx.doi.org/10.1063/1.2353811] crossref(new window)

3.
P. Barquinha, L. Pereira, G. Goncalves, R. Martins, and E. Fortunato, Electrochem. Solid- State Lett., 11, H248 (2008). [DOI: http://dx.doi.org/10.1149/1.2945869] crossref(new window)

4.
R. L. Hoffman, B. J. Norris, and J. F. Wager, Appl. Phys. Lett., 82, 733 (2003). [DOI: http://dx.doi.org/10.1063/1.1542677] crossref(new window)

5.
E.M.C. Fortunato, L.M.N. Pereira, P.M.C. Barquinha, A. M. Botelhodo Rego, G. Gonc¸alves, A. Vil_a, J. R. Morante, and R. F. P. Martins, Appl. Phys. Lett., 92, 222103 (2008). [DOI: http://dx.doi.org/10.1063/1.2937473] crossref(new window)

6.
S. H. Kim, Y. S. Chun, E. Chong, K. C. Jo, C. I. Kim, S. Y. Lee, In Abstract Book of the 6th International Workshop on ZnO and Related Materials(2010).

7.
H. Q. Chiang, J. F. Wager, R. L. Hoffman, J. Jeong, and D. A. Keszler, Appl. Phys. Lett., 86, 013503 (2005). [DOI: http://dx.doi.org/10.1063/1.1843286] crossref(new window)

8.
E. G. Chong, I. J. Kang, C. H. Park, and S. Y. Lee, Thin Solid Films, 534, 609 (2013). [DOI: http://dx.doi.org/10.1016/j.tsf.2013.02.033] crossref(new window)

9.
S. W. Luan and G. W. Neudeck, J. Appl. Phys., 72, 766 (1992). [DOI: http://dx.doi.org/10.1063/1.351809] crossref(new window)

10.
H. H. Berger, Solid-State Electron, 15, 145 (1972). [DOI: http://dx.doi.org/10.1016/0038-1101(72)90048-2] crossref(new window)

11.
K. Ip, G.T. Thaler, H. S. Yang, S. Y. Han, Y. J. Li, D.P. Norton, S.J Pearton, S. W. Jang, and F. Ren, Journal of Crystal Growth, 287, 149 (2006). [DOI: http://dx.doi.org/10.1016/j.jcrysgro.2005.10.059] crossref(new window)

12.
Y. Shimura, K. Nomura, H. Yanagi, T. Kamiya, M. Hirano, and H. Hosono, Thin Solid Films, 516, 5899 (2008). [DOI: http://dx.doi.org/10.1016/j.tsf.2007.10.051] crossref(new window)

13.
S. Lee, H. Park, D.C. Paine, Thin Solid Films, 520, 3769 (2011). [DOI: http://dx.doi.org/10.1016/j.tsf.2011.11.067] crossref(new window)

14.
D. R. Lide, CRC Handbook of Chemistry and Physics, 89th ed., p.12-114, CRC Press, FL, USA (2008).