Advanced SearchSearch Tips
Solution-Derived Amorphous Yttrium Gallium Oxide Thin Films for Liquid Crystal Alignment Layers
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Solution-Derived Amorphous Yttrium Gallium Oxide Thin Films for Liquid Crystal Alignment Layers
Oh, Byeong-Yun;
  PDF(new window)
We demonstrated an alternative electrically controlled birefringence liquid crystal (ECB-LC) system with ion beam (IB)-irradiated yttrium gallium oxide (YGaO) alignment films using a sol-gel process. The surface roughness of the films was dependent on the annealing temperature; aggregated particles on surface were observed at lower annealing temperatures, whereas a smooth surface could be obtained with higher annealing temperatures. Higher transmittance in the visible region was observed at higher annealing temperatures. The film had an amorphous crystallographic state irrespective of the annealing temperature. Furthermore, ECB-LC cell with our IB-irradiated YGaO film yielded faster response time when compared to ECB-LC cell with rubbed polyimide. Considering the fast response time and high transmittance, the IB-irradiated YGaO-base LC system is a powerful alternative application for the liquid crystal display industry.
Liquid crystal alignment layer;Ion beam irradiation;Sol-gel method;Yttrium gallium oxide (YGaO);electrically controlled birefringence (ECB);
 Cited by
J. H. Lee, H. C. Jeong, H. G. Park, and D. S. Seo, RSC Adv., 5, 54079 (2015). [DOI:] crossref(new window)

S. Y. Kim, H. G. Park, M. J. Cho, H C. Jeong, and D. S. Seo, Liquid Crystals, 41, 940 (2014). [DOI:] crossref(new window)

D. C. Woo, C. Y. Koo, H. C. Ma, and H. Y. Lee, Trans. Electr. Electron. Mater., 13, 241 (2012). [DOI: 10.4313/TEEM.2012.13.5.241] crossref(new window)

M. Leskela and M. Ritala, Thin Solid Films, 409, 138 (2002). [DOI:] crossref(new window)

D. J. Cherniak, Phys. Chem. Minerals, 26, 156 (1998). [DOI:] crossref(new window)

S. P. Keller and G. D. Pettit, Rhy. Rev., 121, 1639 (1961). [DOI:] crossref(new window)

S. Mathur, H. Shen, A. Leleckaite, A. Beganskiene, and A. Kareiva, Mater. Res. Bull., 40, 439 (2005). [DOI:] crossref(new window)

J. Li, D. Stein, C. McMullan, D. Branton, M. J. Aziz, and J. A. Golovchenko, Nature, 412, 166 (2001). [DOI:] crossref(new window)

J. J. Lee, H. G. Park, J. J. Han, D. H. Kim, and D. S. Seo, J. Mater. Chem. C, 1, 6824 (2013). [DOI:] crossref(new window)

K. Asakawa and S. Sugata, J. Vac. Sci. Technol. A, 4, 677 (1986). [DOI:] crossref(new window)

W. Zheng, C. H. Lu, and Y. C. Ye, Jpn. J. Appl. Phys., 47, 1651 (2008). [DOI:] crossref(new window)

S. J. Kang, Y. Y. Noh, K. J. Baeg, J. Ghim, J. H. Park, D. Y. Kim, J. S. Kim, J. H. Park, and K. Cho, Appl. Phys. Lett., 92, 052107 (2008). [DOI:] crossref(new window)

F. Yu, D. Yuan, X. Cheng, X. Duan, X. Wang, L. Kong, L. Wang, and Z. Li, Mater. Lett. 61 2322 (2007). [DOI:] crossref(new window)

J. W. Lee, H. G. Park, H. C. Jeong, S. B. Jang, T. K. Park, and D. S. Seo, Opt. Express, 22, 31396 (2014). [DOI:] crossref(new window)

H. C. Jeong, H. G. Park, J. Lee, D. S. Seo, and B. Y. Oh, J. Vac. Sci. Technol. A, 33, 061401 (2015). [DOI:] crossref(new window)