JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Influence of the Ag interlayer on the structural, optical, and electrical properties of ZTO/Ag/ ZTO films
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Influence of the Ag interlayer on the structural, optical, and electrical properties of ZTO/Ag/ ZTO films
Gong, Tae-Kyung; Moon, Hyun-Joo; Kim, Daeil;
  PDF(new window)
 Abstract
ZnSnO3 (ZTO)/Ag/ ZnSnO3 (ZTO) trilayer films were prepared on glass substrates by radio frequency (RF) and direct current (DC) magnetron sputtering. The electrical resistivity and optical transmittance of the films were investigated as a function of the Ag interlayer thickness. ZTO films with a 15 nm thick Ag interlayer show the highest average visible transmittance (83.2%) in the visible range. In this study, the highest figure of merit (2.1×10−2 Ω cm) is obtained with the ZTO 50 nm/Ag 15 nm/ZTO 50 nm films. The enhanced optical and electrical properties of ZTO films with a 15 nm thick Ag interlayer are attributed to the crystallization of the Ag interlayer, as supported by the distinct XRD pattern of the Ag (111) peaks. From the observed results, higher optical and electrical performance of the ZTO film with a 15 nm thick Ag interlayer seems to make a promising alternative to conventional transparent conductive ITO films.
 Keywords
ZTO;Ag;RF magnetron sputtering;Figure of merit;
 Language
English
 Cited by
 References
1.
D. Kim, Vacuum, 81, 279 (2006). [DOI: http://dx.doi.org/10.1016/j.vacuum.2006.04.003] crossref(new window)

2.
K. Hirohata, Y. Nishi, N. Tsukamoto, N. Oka, Y. Sato, I. Yamamoto, and Y. Shigesato, Thin Solid Films, 518, 2980 (2010). [DOI: http://dx.doi.org/10.1016/j.tsf.2009.09.177] crossref(new window)

3.
Daeil Kim, Ceram. Int., 40, 1457 (2014). [DOI: http://dx.doi.org/10.1016/j.ceramint.2013.07.029] crossref(new window)

4.
T. Yamada, A. Miyake, H. Makino, N. Yamamoto, and T. Yamamoto, Thin Solid Films, 517, 3134 (2009). [DOI: http://dx.doi.org/10.1016/j.tsf.2008.11.081] crossref(new window)

5.
T. Y. Ma, and H. Choi, Appl. Surf. Sci., 286, 131 (2013). [DOI: http://dx.doi.org/10.1016/j.apsusc.2013.09.035] crossref(new window)

6.
R. Pandey, S. H. Cho, D. K. Hwang, and W. K. Choi, Curr. Appl. Phys., 14, 850 (2014). [DOI: http://dx.doi.org/10.1016/j.cap.2014.03.020] crossref(new window)

7.
S. K. Kim, S. H. Kim, S. Y. Kim, J. H. Jeon, T. K. Gong, D. H. Choi, D. I. Son, and D. Kim, Ceram. Int., 40, 6673 (2014). [DOI: http://dx.doi.org/10.1016/j.ceramint.2013.11.127] crossref(new window)

8.
J. H. Park, J. H. Chae, and D. Kim, J. Alloys Compd., 478, 330 (2009). [DOI: http://dx.doi.org/10.1016/j.jallcom.2008.11.065] crossref(new window)

9.
C. Guillén, and J. Herrero, Sol. Energy Mater. Sol. Cells, 92, 938 (2008). [DOI: http://dx.doi.org/10.1016/j.solmat.2008.02.038] crossref(new window)

10.
L. Gong, J. Lu, and Z. Ye, Thin Solid Films, 519, 3870 (2011). [DOI: http://dx.doi.org/10.1016/j.tsf.2011.01.396] crossref(new window)