Advanced SearchSearch Tips
Multi-Dielectric & Multi-Band operations on RF MEMS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Multi-Dielectric & Multi-Band operations on RF MEMS
Gogna, Rahul; Gaba, Gurjot Singh; Jha, Mayuri; Prakash, Aditya;
  PDF(new window)
Ever increasing demand for microwave operated applications has cultivated need for high-performance universal systems capable of working on multi-bands. This objective can be realized using Multi-Dielectrics in RF MEMS capacitive switch. In this study, we present a detailed analysis of the effect of various dielectrics on switch performance. The design consists of a capacitive switch and performance is analyzed by changing the dielectric layers beneath the switch. The results are obtained using three different dielectrics including Silicon nitride (7.6), Hafnium dioxide (25) and Titanium oxide (50). Testing of proposed switch yields high isolation (- 87.5 dB) and low insertion loss (- 0.1 dB at 50 GHz) which is substantially better than the conventional switches. The operating bandwidth of the proposed switch (DC to 95 GHz) makes it suitable for wide band microwave applications.
RF MEMS;Multi-band;Multi-dielectric;Low insertion;High isolation;Broadband antennas;
 Cited by
N.J.R. Muniraj, K. Sathesh, Microsystem Technologies, 17, 161 (2011). [DOI: 10.1007/S0054 2-010-1196-4] crossref(new window)

G. L. Tan and G. M. Rebie, IEEE Microwave and Wireless Components Letters, 12, 212 (2002). [DOI:] crossref(new window)

T. Singh, N. Khaira, and J. Sengar, Proceedings IEEE, Fourth International Conference on Computing, Communications and Networking Technologies (Tiruchengode, India, 2013) p. 1. [DOI:] crossref(new window)

M. Angira and K. Rangra, Microsystem Technologies, 21, 1173 (2014). [DOI: 10.1007/S00542-014-2188-6] crossref(new window)

M. Angira and K. Rangra, Microsystem Technologies, 21, 2259 (2015). [DOI: 10.1007/s00542-014-2378-2] crossref(new window)

H. Jaafar, K. S. Beh, N.A.M. Yunus, W.Z.W. Hasan, S. Shafie, and O. Sidek, Microsystem Technologies, 20, 2109 (2014). [DOI: 10.1007/s00542-014-2276-7] crossref(new window)

M. F. Badía, E. Butrado, and A. M. Ionescu, Journal of Microelectromechanical systems, 21, 1229 (2012). [DOI:] crossref(new window)

G. M. Rebeiz, RF MEMS: Theory, Design, and Technology. (Wiley, New York, 2003) p. 7.

X. B. Lu, Z. G. Liu, Y. P. Wang, Y. Yang, X. P. Wang, H. W. Zhou, and B. Y. Nguyen, Journal of Applied Physics, 94, 1229 (2003). [DOI:] crossref(new window)

H. Kim and P. C. McIntyre, Journal of Applied Physics, 92, 5094. [DOI:] crossref(new window)

M. J. Biercuk, D. J. Monsma, C. M. Marcus, J. S. Becker, and R. G. Gordon, Applied Physics Letters, 83, 2405 (2003). [DOI:] crossref(new window)

K. Tokita and F. Okada, Journal of Applied Physics, 80, 7073 (1996). [DOI:] crossref(new window)

B. R. Weinberger and R. B. Garber, Applied Physics Letters, 66, 2409 (1995). [DOI:] crossref(new window)

J. B. Muldavin, G. M. Rebeiz, Proceeding IEEE, 30th European Microwave Conference (Paris, France, 2000) p. 1. [DOI:] crossref(new window)

M. Angira and K. Rangra, Microsystem Technologies, 21, 1447 (2014). [DOI: 10.1007/s00542-014-2222-8] crossref(new window)

C. L. Goldsmith and D. I. Forehand, IEEE Microwave and Wireless Components Letters, 15, 718 (2005). [DOI:] crossref(new window)

C. L. Goldsmith, Z. Yao, S. Eshelman, and D. Denniston, IEEE Microwave And Guided Wave Letters, 8, 269 (1998). [DOI:] crossref(new window)

J. Lampen, S. Majumder, R. Morrison, A. Chaudhry, and J. Maciel, International Journal of RF and Microwave Computer-Aided Engineering, 14, 338 (2004). [DOI:] crossref(new window)

H. C. Lee, J. H. Park, Y. H. Park, Sensors and Actuators, 136, 282 (2007). [DOI:] crossref(new window)

G. Wang, C. Henderson, and J. Papapolymerou, Journal of Microelectromechanical Systems, 16, 550, (2007). [DOI:] crossref(new window)