Advanced SearchSearch Tips
Analysis of Pull-in-Voltage and Figure-of-Merit of Capacitive MEMS Switch
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Analysis of Pull-in-Voltage and Figure-of-Merit of Capacitive MEMS Switch
Saha, Rajesh; Maity, Santanu; Devi, Ngasepam Monica; Bhunia, Chandan Tilak;
  PDF(new window)
Theoretical and graphical analysis of pull-in-voltage and figure of merit for a fixed-fixed capacitive Micro Electromechanical Systems (MEMS) switch is presented in this paper. MEMS switch consists of a thin electrode called bridge suspended over a central line and both ends of the bridge are fixed at the ground planes of a coplanar waveguide (CPW) structure. A thin layer of dielectric material is deposited between the bridge and centre conductor to avoid stiction and provide low impedance path between the electrodes. When an actuation voltage is applied between the electrodes, the metal bridge acquires pull in effect as it crosses one third of distance between them. In this study, we describe behavior of pull-in voltage and figure of merit (or capacitance ratio) of capacitive MEMS switch for five different dielectric materials. The effects of dielectric thicknesses are also considered to calculate the values of pull-in-voltage and capacitance ratio. This work shows that a reduced pull-in-voltage with increase in capacitance ratio can be achieved by using dielectric material of high dielectric constant above the central line of CPW.
Figure of merit;MEMS;Pull-in-voltage;
 Cited by
G. M. Rebeiz, RF MEMS Theory, Design, and Technology (New York, J. Wiley & Sons, 2003)

F. Lin, M. Wang, and M. Rais-Zadeh, Wireless Research Collaboration Symposium (NWRCS), 2014 National, p. 11-14.

K. Topalli, M. Unlu, H. I. Atasoy, O. A. Civi, S. Demir, and T. Akin, Prog. in Electromagnetic Research, PIER 97, 343 (2009). [DOI:] crossref(new window)

A. Kundu, S. Das, S. Maity, B. Gupta, S. K. Lahiri, and H. Saha, Journal of Micromechanics and Microengineering, 22, 045004 (2013). [DOI:] crossref(new window)

R. Saha, S. Maity, and C. T. Bhunia, Alexandria Engineering Journal, 55 (2016). [DOI:] crossref(new window)

Ng. M. Devi, S. Maity, R. Saha, and S. K. Metya, Cogent Engineering, 2, 1083641 (2015). [DOI:] crossref(new window)

S. Das, A. Kundu, S. Maity, S. Dhar, and B. Gupta, 11th Mediterranean Microwave Symposium (MMS), 286-289 (2011). [DOI:] crossref(new window)

C. W. Jung, M. J. Lee, G. P. Li, and F. D. Flaviis, IEEE Transaction on Antennas and Propagation, 54, 455 (2006). [DOI:] crossref(new window)

M. Maheswaran, M. Nambirajan, U.C.C. Yadav, and H. N. Upadhyay, Journal of Applied Sciences, 12, 1730 (2012). [DOI:] crossref(new window)

S. Flores, E. R. Ruelas, M. Flores, and J. C. Chiao, Proc. of the MRS Materials Society Fall Meeting (Boston, 2003) p. A5.86.1-A5.863.

P. Verma and S. Singh, IOSR Journal of Electronics and Communication Engineering, 4, 60 (2013). [DOI:] crossref(new window)

G. N. Nielson and G. Barbastathis, J. Microelectromech Syst., 15, 811 (2006). [DOI:] crossref(new window)

D. C. Ferguson, Mater. Design, 22, 555 (2001). [DOI:] crossref(new window)

S. Senturia, Microsystem Design (Kluwer Academic Publishers, 2001).

J. M. Huang, K. M. Liew, C. H. Wong, S. Rajendran, M. J. Tan, and A. Q. Liu, Sensors and Actuators, A, 93, 273 (2001). [DOI:] crossref(new window)