JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Efficiency Improvement of Organic Solar Cells Using Two-step Annealing Technique
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Efficiency Improvement of Organic Solar Cells Using Two-step Annealing Technique
Masood, Bilal; Haider, Arsalan; Nawaz, Tehsin;
  PDF(new window)
 Abstract
The fullerene solar cells are becoming a feasible choice due to the advanced developments in donor materials and improved fabrication techniques of devices. Recently, sufficient optimization and improvements in the processing techniques like incorporation of solvent vapor annealing (SVA) with additives in solvents has become a major cause of prominent improvements in the performance of organic solar cell-based devices . On the other hand, the challenge of reduced open circuit voltage (Voc) remains. This study presents an approach for significant performance improvement of overall device based on organic small molecular solar cells (SMSCs) by following a two step technique that comprises thermal annealing (TA) and SVA (abbreviated as SVA+TA). In case of exclusive use of SVA, reduction in Voc can be eliminated in an effective way. The characteristics of charge carriers can be determined by the measurement of transient photo-voltage (TPV) and transient photo-current (TPC) that determines the scope for improvement in the performance of device by two step annealing. The recovery of reduced Voc is linked with the necessary change in the dynamics of charge that lead to increased overall performance of device. Moreover, SVA and TA complement each other; therefore, two step annealing technique is an appropriate way to simultaneously improve the parameters such as Voc, fill factor (FF), short circuit current density (Jsc) and PCE of small molecular solar cells.
 Keywords
SMSCSs;TA;SVA;FF;PCE;
 Language
English
 Cited by
 References
1.
J. E. Coughlin, Z. B. Henson, G. C. Welch, and G. C. Bazan, Acc. Chem. Res., 47, 257 (2013). [DOI: http://dx.doi.org/10.1021/ar400136b] crossref(new window)

2.
Q. Zhang, B. Kan, T. P. Russell, and Y. Chen, Nature Photon., 9, 35 (2015). [DOI: http://dx.doi.org/10.1038/nphoton.2014.269] crossref(new window)

3.
Y. Sun, G. C. Welch, W. L. Leong, C. J. Takacs, and G. C. Bazan, Nature Mater., 11, 44 (2012). [DOI: http://dx.doi.org/10.1038/nmat3160] crossref(new window)

4.
Y. Liu, C. C. Chen, Z. Hong, J. GAO, and Y. Yang, Sci. Rep., 3, 3356 (2013).

5.
C. Zhong, S. Su, M. Xu, H. Wu, and Y. Cao, Nature Photon., 6, 591 (2012).

6.
B. Kan, Q. Zhang, M. Li, X. Wan, W. Ni, G. Long, Y. Wang, X. Yang, H. Feng, and Y. Chen, J. Amer.Chem. Soc., 136, 15529 (2014). [DOI: http://dx.doi.org/10.1021/ja509703k] crossref(new window)

7.
V. Gupta, S. Chand, G. C. Bazan, and A. J. Heeger, Sci. Rep., 3, 1965 (2013).

8.
G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery, and Y. Yang, Nature Mater., 4, 864 (2005). [DOI: http://dx.doi.org/10.1038/nmat1500] crossref(new window)

9.
L. Zheng, J. Liu, Y. Ding, and Y. Han, J. Phys. Chem. B, 115, 8071 (2011). [DOI: http://dx.doi.org/10.1021/jp2030279] crossref(new window)

10.
Z. Huang, E. C. Fregoso, S. Dimitrov, and J. R. Durrant, J. Mater. Chem. A, 2, 19282 (2014). [DOI: http://dx.doi.org/10.1039/C4TA03589E] crossref(new window)

11.
B. Walker, A. B. Tamayo, X. D. Dang, and T. Q. Nguyen, Adv. Funct. Mater., 1, 3063 (2009). [DOI: http://dx.doi.org/10.1002/adfm.200900832] crossref(new window)

12.
K. Sun, Z. Xiao, E. Hanssen, and D. J. Jones, J. Mater. Chem. A, 2, 9048 (2014). [DOI: http://dx.doi.org/10.1039/c4ta01125b] crossref(new window)

13.
J. Liu, L. Chen, B. Gao, X. Cao, Y. Han, Z. Xiea, and L. Wanga, J. Mater. Chem. A, 1, 6216 (2013). [DOI: http://dx.doi.org/10.1039/c3ta10629b] crossref(new window)

14.
J. Peet, J. Y. Kim, N. E. Coates, W. L. Ma, D. Moses, A. J. Heeger, and G. C. Bazan, Nature Mater., 6, 497 (2007). [DOI: http://dx.doi.org/10.1038/nmat1928] crossref(new window)

15.
C. G. Shuttle, B. O'Regan, A. M. Ballantyne, and J. R. Durrant, Appl. Phys. Lett., 92, 183501 (2008). [DOI: http://dx.doi.org/10.1063/1.3006316] crossref(new window)

16.
Z. Li, F. Gao, N. C. Greenham, and C. R. McNeill, Adv. Funct. Mater., 21, 1419 (2011). [DOI: http://dx.doi.org/10.1002/adfm.201002154] crossref(new window)

17.
C. G. Shuttle, A. Maurano, R. Hamilton, B. O'Regan, J. C. de Mello, and J. R. Durrant, Appl. Phys. Lett., 93, 183501 (2008). [DOI: http://dx.doi.org/10.1063/1.3006316] crossref(new window)

18.
P. P. Boix, J. Ajuria, R. Pacios, and G. G. Belmonte, Appl. Phys. Lett., 109, 074514 (2011).

19.
A. Semlyen, IEEE Trans. Power App. Syst., PAS-100, 848 (1981). [DOI: http://dx.doi.org/10.1109/TPAS.1981.316943] crossref(new window)

20.
A. Semlyen and A. Roth, IEEE Trans. Power App. Syst., 96, 667 (1977). [DOI: http://dx.doi.org/10.1109/T-PAS.1977.32378] crossref(new window)

21.
T. Kirchartz, B. E. Pieters, K. Taretto, and U. Rau, Phys. Rev. B., 80, 035334 (2009). [DOI: http://dx.doi.org/10.1103/PhysRevB.80.035334] crossref(new window)

22.
G. Wei, S. Wang, K. Sun, M. E. Thompson, and S. R. Forrest, Adv. Energy. Mater., 1, 184 (2011). [DOI: http://dx.doi.org/10.1002/aenm.201100045] crossref(new window)

23.
H. C. Liao, C. S. Tsao, Y. C. Huang, M.H. Jao, K. Y. Tien, C. M. Chuang, C. Y. Chen, C. J. Su, U. S. Jeng, Y. F. Chend, and W. F. Su, RSC Adv., 4, 6246 (2014). [DOI: http://dx.doi.org/10.1039/c3ra45619f] crossref(new window)

24.
C. D. Wessendorf, G. L. Schulz, A. Mishra, and P. Bauerle, Adv. Energy Mater., 4, 1400266 (2014). [DOI: http://dx.doi.org/10.1002/aenm.201400266] crossref(new window)

25.
W. Chen, D. C. Qi, Y. L. Huang, H. Huang, Y. Z. Wang, S. Chen, X. Y. Gao, and A.T.S. Wee, J. Phys. Chem. C, 113, 12832 (2009). [DOI: http://dx.doi.org/10.1021/jp903139q] crossref(new window)