JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Synthesis and Characterization of Silver Vanadium Oxide as a Cathode for Lithium Ion Batteries
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Synthesis and Characterization of Silver Vanadium Oxide as a Cathode for Lithium Ion Batteries
Nguyen, Van Hiep; Gu, Hal-Bon;
  PDF(new window)
 Abstract
β-AgVO3 nanorods have been successfully synthesized using a soft chemistry route followed by heat treatment. They were characterized by X-ray diffraction and field emission scanning electron microscopy, and their electrochemical properties were investigated using cyclic voltammetry, impedance spectra, and charge-discharge tests. The results showed that the smooth-surfaced nanorods are very uniform and well dispersed, with diameters of ~100-200 nm and lengths of the order of several macrometers. The nanorods deliver a maximum specific discharge capacity of 275 mAh g-1 at 30 mA g-1. They also demonstrated good rate capability with a discharge capacity at the 100th cycle of 51 mAh g-1.
 Keywords
Composite materials;Electrode materials;Electronic properties;
 Language
English
 Cited by
1.
High Tunability and Performance of Cylindrical Hybrid Supercapacitors with Binary H2Ti12O25-Li4Ti5O12 Anodes, Electrochimica Acta, 2016, 220, 231  crossref(new windwow)
2.
Applications of Novel Carbon/AlPO4 Hybrid-Coated H2Ti12O25 as a High-Performance Anode for Cylindrical Hybrid Supercapacitors, ACS Applied Materials & Interfaces, 2016, 8, 42, 28974  crossref(new windwow)
 References
1.
M. S. Whittingham, Chem. Rev., 104, 4271 (2004). [DOI: http://dx.doi.org/10.1021/cr020731c] crossref(new window)

2.
K. J. Takeuchi, A. C. Marschilok, S. M. Davis, R. A. Leising, and E. S. Takeuchi, Chem. Rev., 283, 219 (2001).

3.
L. Q. Mai, L. Xu, Q. Gao, C. H. Han, B. Hu, and Y. Q. Pi, Nano. Lett., 10, 2604 (2010). [DOI: http://dx.doi.org/10.1021/nl1013184] crossref(new window)

4.
E. M. Sorensen, H. K. Lzumi, J. T. Vaughey, C. L. Stern, and K. R. Poeppelmeier. J. Am. Chem. Soc., 127, 6347 (2005). [DOI: http://dx.doi.org/10.1021/ja050150f] crossref(new window)

5.
S. Zhang, W. Li, C. Li, and J. Chen, J. Phys. Chem. B, 110, 24855 (2006). [DOI: http://dx.doi.org/10.1021/jp065478p] crossref(new window)

6.
L. Q. Mai, X. Xu, C. H. Han, Y. Z. Luo, L. Xu, Y. A. Wu, and Y. L. Zhao, Nano. Lett., 11, 4992 (2011). [DOI: http://dx.doi.org/10.1021/nl202943b] crossref(new window)

7.
S. Liang, J. Zhou, A. Pan, Y. Li, T. Chen, Z. Tian, and H. Ding, Mat. Lett., 74, 176 (2012). [DOI: http://dx.doi.org/10.1016/j.matlet.2012.01.101] crossref(new window)

8.
R. A. Leising and E. S. Takeuchi, Chem. Mater., 6, 489 (1994). [DOI: http://dx.doi.org/10.1021/cm00040a025] crossref(new window)

9.
F. Cheng and J. Chen, J. Mater. Chem., 21, 9841 (2011). [DOI: http://dx.doi.org/10.1039/c0jm04239k] crossref(new window)