Advanced SearchSearch Tips
Growth and Properties of CrNx/TiNy/Al Based on N2 Gas Flow Rate for Solar Thermal Applications
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Growth and Properties of CrNx/TiNy/Al Based on N2 Gas Flow Rate for Solar Thermal Applications
Ju, Sang-Jun; Jang, Gun-Eik; Jang, Yeo-Won; Kim, Hyun-Hoo; Lee, Cheon;
  PDF(new window)
The CrN/TiN/Al thin films for solar selective absorber were prepared by dc reactive magnetron sputtering with multi targets. The binary nitride CrN layer deposited with change in N2 gas flow rates. The gas mixture of Ar and N2 was an important parameter during sputtering deposition because the metal volume fraction (MVF) was controlled by the N2 gas flow rate. In this study, the crystallinity and surface properties of the CrN/TiN/Al thin films were estimated by X-ray diffraction (XRD), atomic force microscopy (AFM) and field emission scanning electron microscopy (FESEM). The composition and depth profile of thin films were investigated using Auger electron spectroscopy (AES). The absorptance and reflectance with wavelength spectrum were recorded by UV-Vis-NIR spectrophotometry at a range of 300~1,100 nm.
Solar selective absorber;DC magnetron sputtering;Binary nitrides;Multi-layer;Absorptance;
 Cited by
Structural, Morphological, and Optical Characterizations of Mo, CrN and Mo:CrN Sputtered Coatings for Potential Solar Selective Applications, Applied Surface Science, 2018  crossref(new windwow)
I. T. Ritchie and B. Window, Appl. Opt., 16, 1438 (1977). [DOI:] crossref(new window)

S. Esposito, A. Antonaia, M. L. Addonizio, and S. Aprea, Thin Solid Films, 517, 6000 (2009). [DOI:] crossref(new window)

R. C. Juang, Y. C. Yeh, B. H. Chang, W. C. Chen, and T. W. Chung, Thin Solid Films, 518, 5501 (2010). [DOI:] crossref(new window)

H. C. Barshilia, Sol. Energy Mater. & Sol. Cells, 130, 322 (2014). [DOI:] crossref(new window)

T. I. Ohm, W. T. Yeo, and D. C. Kim, J. Kor. Sol. Energy Soc., 33, 27 (2013). [DOI:] crossref(new window)

C. G. Granqvist and G. A. Niklasson, J. Appl. Phys., 49, 3512 (1978). [DOI:] crossref(new window)

H. Hasegawa, M. Kawate, and T. Suzuki, Surf. Coat. Technol., 200, 2409 (2005). [DOI:] crossref(new window)

Y. Makino, Surf. Coat. Technol., 193, 185 (2005). [DOI:] crossref(new window)

Q. C. Zhang, Sol. Energy Mater. & Sol. Cells, 52, 95 (1998). [DOI:] crossref(new window)

M. D. Julkarnain, J. Hossain, K. S. Sharif, and K. A. Khan, J. Optoelect. & Adv. Mater., 13, 485 (2011).

H. Murata and T. Ohba, Mater. Trans., 12, 2907 (2008). [DOI:] crossref(new window)

V. Dimitrova, D. Manova, T. Paskova, T. Uzunov, N. Ivanov, and D. Dechev, Vacuum, 51, 161 (1998). [DOI:] crossref(new window)

A. R. Shashikala, A. K. Sharma, and D. R. Bhandari, Sol. Energy Mater. & Sol. Cells, 91, 629 (2007). [DOI:] crossref(new window)

E. Barrera-Calva, A. Avila, J. Mena, V. H. Lara, M. Ruiz, and J. Mendez-Vivar, Sol. Energy Mater. & Sol. Cells, 76, 387 (2003). [DOI:] crossref(new window)

J. Chen, C. Guo, J. Chen, J. He, Y. Ren, and L. Hu, Mater. Lett., 133, 71 (2014). [DOI:] crossref(new window)

H. C. Barshilia, N. Selvakumar, and K. S. Rajam, Appl. Phys. Lett., 89, 1 (2006). [DOI:] crossref(new window)