JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Development of a Novel Noncontact ECG Electrode by MEMS Fabrication Process
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Development of a Novel Noncontact ECG Electrode by MEMS Fabrication Process
Mathias, Dakurah Naangmenkpeong; Park, Jaesoon; Kim, Eungbo; Joung, Yeun-Ho;
  PDF(new window)
 Abstract
Contact electrodes pose threats like inflammation, metal poisoning, and allergic reaction to the user during long term ECG procedure. Therefore, we present a novel noncontact electrocardiographic electrode designed through microelectromechanical systems (MEMS) process. The proposed ECG electrode consists of small inner and large outer circular copper plates separated by thin insulator. The inner plate enables capacitive transduction of bio-potential variations on a subject’s chest into a voltage that can be processed by a signal processing board, whereas the outer plate shields the inner plate from environmental electromagnetic noise. The electrode lead wires are also coaxially designed to prevent cables from coupling to ground or electronic devices. A prototype ECG electrode has an area of about 2.324 cm2, is very flexible and does not require power to operate. The prototype ECG electrode could measure ECG at about 500 um distance from the subject’s chest.
 Keywords
Capacitive MEMS;Electrocardiography;Biopotential;Biosensor;
 Language
English
 Cited by
 References
1.
N. W. Meziane, J. G. Attari, and M. Nimunkar (2013). Dry electrodes for electrocardiography. Retrieved on November 18, 2014 from http://iopscience.iop.org.

2.
R. Matthews, N. J. McDonald, I.F.P. Hervieux, and T. Nielsen, Quantum Applied Science and Research (San Diego, USA) 92121.

3.
Gruetzmann, A. Hansen, and S. Muller (2007, January). Novel dry electrodes for ECG monitoring. Accessed November 18, 2014. Available at http://iopscience.iop.org.

4.
P. C. Richardson and L. A., IEEE Transactions on Biomedical Engineering, BME-16, 99-99 (1969). [DOI: http://dx.doi.org/10.1109/TBME.1969.4502613] crossref(new window)

5.
C. J. Harland, T. D. Clark, and R. J. Prance, Materials, Science and Technology, 13, 163 (2002).

6.
T. Maruyama, M. Makikawa, N. Shiozawa, and Y. Fujiwara, IEEE/ICME International Conference on Complex Medical Engineering, 378-383 (2007).

7.
P. Allan and L. Menke, IEEE Transactions on Biomedical Engineering, BME-17, 350 (1970). [DOI: http://dx.doi.org/10.1109/TBME.1970.4502765] crossref(new window)

8.
L. M. Jaime, P. Frederick, H. D. Andrew, M. Robert, and M. Craig, RTO HFM Symposium on Combat Casualty Care in Ground Based Tactical Situations: Trauma Technology and Emergency Medical Procedures (St. Pete Beach, USA, 2004)

9.
M. Ishijima, IEEE Transactions on Biomedical Engineering, 40, 593-594 (1993). [DOI: http://dx.doi.org/10.1109/10.237680] crossref(new window)

10.
M. Ogawa, T. Tamura, T. Togawa, and M. Yoda, Med. Eng. Phys., 20, 573-579 (1998). [DOI: http://dx.doi.org/10.1016/S1350-4533(98)00064-2] crossref(new window)

11.
A. Ueno, Y. Akabane, T. Kato, H. Hoshino, S. Kataoka, and Y. Ishiyama, IEEE Transactions on Biomedical Engineering, 54, 759-766 (2007). [DOI: http://dx.doi.org/10.1109/TBME.2006.889201] crossref(new window)

12.
G. L. Yong, K. K. Ko, and P. Suk, IEEE Transactions on Biomedical Engineering, 54, 718-725 (2007). [DOI: http://dx.doi.org/10.1109/TBME.2006.889194] crossref(new window)

13.
G. L. Yong, K. K. Ko, and S. P. Kwang, IEEE Transactions on Biomedical Engineering, 53, 956-959 (2006). [DOI: http://dx.doi.org/10.1109/TBME.2006.872823] crossref(new window)

14.
S. Gotoh, T. Matsui, and I. Arai, Biomed Pharmacother, 59, S188-S191 (2005). [DOI: http://dx.doi.org/10.1016/S0753-3322(05)80030-7] crossref(new window)

15.
K. K. Ko, K. L. Yong, and S. P. Kwang, 27th Annual International Conference of the IEEE-EMBS 2005.

16.
M. Steffen, A. Aleksandrowicz, and S. Leonhardt, IEEE Transactions on Biomedical Circuits and Systems, 1, 250-257 (2007). [DOI: http://dx.doi.org/10.1109/TBCAS.2008.915633] crossref(new window)

17.
M. Walter, B. Eilebrecht, T. Wartzek, and S. Leonhardt, Pers. Ubiquitous Comput., 15, 707-715 (2011). [DOI: http://dx.doi. org/10.1007/s00779-010-0350-4] crossref(new window)

18.
M. C. Yu, J. Tzyy-Ping, and C. Gert, IEEE Reviews in Biomedical Engineering, 3, 106-119 (2010). [DOI: http://dx.doi.org/10.1109/RBME.2010.2084078] crossref(new window)

19.
T. Wartzek, T. Lammersen, B. Eilebrecht, M. Walter, and S. Leonhardt, IEEE Transactions on Biomedical Engineering, 58, 1268-1277 (2011). [DOI: http://dx.doi.org/10.1109/TBME.2010.2100393] crossref(new window)

20.
J. Webster, 6th IEEE Regional Conference (1977).

21.
O. Casas and R. Pallas-Areny, 29th Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. (2007).

22.
A. Potter and L. Menke, IEEE Transactions on Biomedical Eng., 17, 350-351 (1970). [DOI: http://dx.doi.org/10.1109/TBME.1970.4502765] crossref(new window)

23.
F. K. Coombs, P. C. Richardson, and R. M. Adams, Aerop. Med., 7 (1968).

24.
P. C. Richardson, K. J. Sladek, and C. H. Lagow, IEEE Transactions on Biomedical Eng., BME-18, 162-164 (1971). [DOI: http://dx.doi.org/10.1109/TBME.1971.4502820] crossref(new window)