JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Electrochemical Properties of a Si3N4 Dielectric Layer Deposited on Anodic Aluminum Oxide for Chemical Sensors
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Electrochemical Properties of a Si3N4 Dielectric Layer Deposited on Anodic Aluminum Oxide for Chemical Sensors
Jo, Ye-Won; Lee, Sung-Gap; Yeo, Jin-Ho; Lee, Dong-Jin;
  PDF(new window)
 Abstract
We studied an electrolyte-dielectric metal (EDM) device based on a Si3N4 layer-coated anodic aluminium oxide (AAO) template for chemical sensors. The AAO templates were fabricated using a two-step anodization procedure at 0℃ and 70 V in 0.3 M oxalic acid, after which the Si3N4 was deposited on them using plasma enhanced chemical vapor deposition (PECVD). The average pore size was approximately 106 nm and the depth of the AAO templates was 24.6 nm to 86.5 nm. The Si3N4 layer-coated AAO is more stable than a single AAO template.
 Keywords
AAO;EDM;Chemical sensor;
 Language
English
 Cited by
 References
1.
H. Masuda and M. Satoh, Jpn. J. Appl. Phys., 35, 126 (1996). [DOI: http://dx.doi.org/10.1143/JJAP.35.L126] crossref(new window)

2.
G. J. Wang and C. S. Peng, ENS'05 Paris (France, 2005).

3.
T. Shimizu, F. Inoue, C. Wang, S. Otsuka, Y. Tada, M. Koto, and S. Shingubara, Jpn. J. Appl. Phys., 65, 06GF06 (2013).

4.
C. Sunseri, C. Spadaro, S. Piazza, M. Volpe, and F. Di Quarto, J. Solid State Electrochem., 10, 416 (2006). [DOI: http://dx.doi.org/10.1007/s10008-005-0012-z] crossref(new window)

5.
G. Hu, H. Zhang, W. Di, and T. Zhao, Appl. Phys. Res., 1, 78 (2009). http://dx.doi.org/10.5539/apr.v1n2p78 crossref(new window)

6.
M. J. Schoning, F. Ronkel, M. Crott, M. Thust, J. W. Schultz, P. Korodos, and H. Luth, Electrochim. Acta, 42, 3185 (1997). [DOI: http://dx.doi.org/10.1016/S0013-4686(97)00172-2] crossref(new window)

7.
M. J. Schoning, U. Malkoc, M. Thust, A. Steffen, P. Kordos, and H. Luth, Sensor Actuat. B, 65, 288 (2000). [DOI: http://dx.doi.org/10.1016/S0925-4005(99)00349-4] crossref(new window)

8.
K. B. Oldham, J. Electroanal Chem., 613, 131 (2008). [DOI: http://dx.doi.org/10.1016/j.jelechem.2007.10.017] crossref(new window)

9.
P. Bergveld, IEEE Trans. Biomed. Eng., BME-17, 70 (1970). [DOI: http://dx.doi.org/10.1109/TBME.1970.4502688] crossref(new window)

10.
M. J. Schoning, D. Tsarouchas, L. Beckers, J. Schubert, W. Zander, P. Kordos, and H. Luth, Sensor Actuat. B, 35, 228 (1996). [DOI: http://dx.doi.org/10.1016/S0925-4005(97)80060-3] crossref(new window)

11.
M. J. Schöning, Sensors and Actuators B, 65, 288 (2000). [DOI: http://dx.doi.org/10.1016/S0925-4005(99)00349-4] crossref(new window)

12.
C. D. Fung, IEEE Trans. Electron Dev., 33, 8 (1986). [DOI: http://dx.doi.org/10.1109/T-ED.1986.22429] crossref(new window)

13.
P. V. Bobrov, Sensors and Actuators B, 3, 75 (1991). [DOI: http://dx.doi.org/10.1016/0925-4005(91)85010-G] crossref(new window)

14.
C. S. Lai, Solid State Lett., 9, 90 (2006). crossref(new window)

15.
S. Yoshida, J. Electrochem. Soc., 151, 53 (2004). [DOI: http://dx.doi.org/10.1149/1.1643074] crossref(new window)

16.
T. M. Pan, Sensors and Actuators B, 138, 619 (2009). [DOI: http://dx.doi.org/10.1016/j.snb.2009.01.051] crossref(new window)

17.
K. B. Oldham, J. Electroanal. Chem., 613, 131 (2008). [DOI: http://dx.doi.org/10.1016/j.jelechem.2007.10.017] crossref(new window)

18.
B. L. Kuzin and D. I. Bronin, Ionics, 7, 141 (2001). [DOI: http://dx.doi.org/10.1007/BF02375482] crossref(new window)

19.
B. Piela and P. K. Wrona, J. Electroanal. Chem., 388, 69 (1995). [DOI: http://dx.doi.org/10.1016/0022-0728(94)03848-W] crossref(new window)

20.
J. K. Park. Y. J. Baik, Materials Latters, 63, 1674 (2009). [DOI: http://dx.doi.org/10.1016/j.matlet.2009.05.006] crossref(new window)