Advanced SearchSearch Tips
Local nanofiller volume concentration effect on elastic properties of polymer nanocomposites
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Local nanofiller volume concentration effect on elastic properties of polymer nanocomposites
Shin, Hyunseong; Han, Jin-Gyu; Chang, Seongmin; Cho, Maenghyo;
In this study, an influence of local variation of nanoparticulate volume fraction on the homogenized elastic properties is investigated. It is well known that interface effect is dependent on the radius and volume fraction of reinforced nanofillers. However, there is no study on the multiscale modeling and analysis of polymer nanocomposites including polydispersed nanoparticles with consideration of interphase zone, which is dependent on the volume fraction of corresponding nanoparticles. As results of numerical examples, it is confirmed that an influence of local variation of nanoparticulate volume fraction should be considered for non-dilute system such as cluster of nanoparticles. Therefore representative volume element analysis is conducted by considering local variation of nanoparticle volume fraction in order to analyze the practical size of cell including hundreds of nanoparticles. It is expected that this study could be extended to the multiparticulate nanocomposite systems including polydispersed nanoparticles.
volume fraction effect;polymer nanocomposites;multiscale homogenization;molecular dynamics simulation;interface effect;
 Cited by
Barai, P. and Weng, G.J. (2011), "A theory of plasticity for carbon nanotube reinforced composites", Int. J. Plast., 27(4), 539-559. crossref(new window)

Bendsoe, M.P. and Kikuchi, N. (1988), "Generating optimal topologies in structural design using a homogenization method", Comput. Method. Appl. Mech. Eng., 71(2), 197-224. crossref(new window)

Cho, M., Yang, S., Chang, S. and Yu, S. (2011), "A study on the prediction of the mechanical properties of nanoparticulate composites using the homogenization method with the effective interface concept", Int. J. Numer. Meth. Eng., 85(12), 1564-1583. crossref(new window)

Friebel, C., Doghri, I. and Legat, V. (2006), "General mean-field homogenization schemes for viscoelastic composites containing multiple phases of coated inclusions", Int. J. Solid. Struct., 43(9), 2513-2541. crossref(new window)

Goyal, R.K., Tiwari, A.N., Mulik, U.P. and Negi, Y.S. (2008), "Thermal expansion behavior of high performance PEEK matrix composites", J. Phys. D: Appl. Phys., 41(8), 085403. crossref(new window)

Guedes, J.M. and Kikuchi, N. (1990), "Preprocessing and postprocessing for materials based on the homogenization method with adaptive finite element methods", Comput. Method. Appl. Mech. Eng., 83(2), 143-198. crossref(new window)

Kim, B., Choi, J., Yang, S., Yu, S. and Cho, M. (2015), "Influence of crosslink density on the interfacial characteristics of epoxy nanocomposites", Polymer, 60, 186-197. crossref(new window)

Liu, J., Gao, Y., Cao, D., Zhang, L. and Guo, Z. (2011), "Nanoparticle dispersion and aggregation in polymer nanocomposite: Insights from molecular dynamics simulation", Langmuir, 27(12), 7926-7933. crossref(new window)

Odegard, G.M., Clancy, T.C. and Gates, T.S. (2005), "Modeling of the mechanical properties of nanoparticle/polymer composites", Polymer, 46(2), 553-562. crossref(new window)

Parrinello, M. and Rahman, A. (1982), "Strain fluctuations and elastic constants", J. Chem. Phys., 76(5), 2662-2666. crossref(new window)

Shi, D.-L., Feng, X.-Q., Huang, Y. Y., Hwang, K.-C. and Gao, H. (2004), "The effect of nanotube waviness and agglomeration on the elastic property of carbon nanotube-reinforced composites", Trans. ASME J. Appl. Mech., 126(3), 250-257.

Shin, H., Yang, S., Chang, S., Yu, S. and Cho, M. (2013), "Multiscale homogenization modeling for thermal transport properties of polymer nanocomposites with Kapitza thermal resistance", Polymer, 54(5), 1543-1554. crossref(new window)

Thostenson, E.T., Li, C. and Chou, T.W. (2005), "Nanocomposites in context", Compos. Sci. Technol., 65(3), 491-516. crossref(new window)

Vu-Bac, N., Lahmer, T., Keitel, H., Zhao, J., Zhuang, X. and Rabczuk, T. (2014), "Stochastic predictions of bulk properties of amorphous polyethylene based on molecular dynamics simulations", Mech. Mater., 68, 70-84. crossref(new window)

Wei, C., Srivastava, D. and Cho, K. (2002), "Thermal expansion and diffusion coefficients of carbon nanotube-polymer composites", Nano. Lett., 2(6), 647-650. crossref(new window)

Xu, N., Dai, J., Zhu, Z., Huang, X. and Wu, P. (2012), "Synthesis and characterization of hollow glassceramics microspheres", Compos. Sci. Technol., 72(4), 528-532. crossref(new window)

Yang, S. and Cho, M. (2008), "Scale bridging method to characterize mechanical properties of nanoparticle/polymer nanocomposites", Appl. Phys. Lett., 93(4), 043111. crossref(new window)

Yang, S. and Cho, M. (2009), "A scale-bridging method for nanoparticulate polymer nanocomposites and their nondilute concentration method", Appl. Phys. Lett., 94(22), 223104. crossref(new window)

Yang, S., Choi, J. and Cho, M. (2012), "Elastic stiffness and filler size effect of covalently grafted nanosilica polyimide composites: molecular dynamics study", ACS Appl. Mater. Interfaces., 4(9), 4792-4799. crossref(new window)

Yang, S., Yu, S., Kyoung, W., Han, D.-S. and Cho, M. (2012), "Multiscale modeling of size-dependent elastic properties of carbon nanotube/polymer nanocomposites with interfacial imperfections", Polymer, 53(2), 623-633. crossref(new window)

Zeng, Q.H., Yu, A.B. and Lu, G.Q. (2008), "Multiscale modeling and simulation of polymer nanocomposites", Prog. Polym. Sci., 33(2), 191-269. crossref(new window)