JOURNAL BROWSE
Search
Advanced SearchSearch Tips
A framework for geometrically non-linear gradient extended crystal plasticity coupled to heat conduction and damage
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
A framework for geometrically non-linear gradient extended crystal plasticity coupled to heat conduction and damage
Ekh, Magnus; Bargmann, Swantje;
 
 Abstract
Gradient enhanced theories of crystal plasticity enjoy great research interest. The focus of this work is on thermodynamically consistent modeling of grain size dependent hardening effects. In this contribution, we develop a model framework for damage coupled to gradient enhanced crystal thermoplasticity. The damage initiation is directly linked to the accumulated plastic slip. The theoretical setting is that of finite strains. Numerical results on single-crystalline metal showing the development of damage conclude the paper.
 Keywords
crystal plasticity;heat conduction;damage;gradient extension;dislocations;
 Language
English
 Cited by
 References
1.
Acharya, A., Bassani, J.L. and Beaudoin, A. (2003), "Geometrically necessary dislocations, hardening, and a simple gradient theory of crystal plasticity", Scripta Materialia, 48(2), 167-172. crossref(new window)

2.
Aslan, O. and Forest, S. (2011), "The micromorphic versus phase field approach to gradient plasticity and damage with application to cracking in metal single crystals", Multiscale Methods in Computational Mechanics, Springer, Netherlands.

3.
Bargmann, S., Ekh, M., Runesson, K. and Svendsen, B. (2010), "Modeling of polycrystals with gradient crystal plasticity: A comparison of strategies", Philosoph. Magaz., 90(10), 1263-1288. crossref(new window)

4.
Bargmann, S., Svendsen, B. and Ekh, M. (2011), "An extended crystal plasticity model for latent hardening in polycrystals", Comput. Mech., 48(6), 631-645. crossref(new window)

5.
Bargmann, S. and Ekh, M. (2013), "Microscopic temperature field prediction during adiabatic loading in a gradient extended crystal plasticity theory", Int. J. Solid. Struct., 50(6), 899-906. crossref(new window)

6.
Bayley, C., Brekelmans, W. and Geers, M. (2006), "A comparison of dislocation induced back stress formulations in strain gradient crystal plasticity", Int. J. Solid. Struct., 43(24), 7268-7286. crossref(new window)

7.
Bazant, Z. and Lin, F.-B. (1988), "Non-local yield limit degradation", Int. J. Numer. Meth. Eng., 26(8), 1805-1823. crossref(new window)

8.
Bodelot, L., Charkaluk, E., Sabatier, L. and Dufrenoy, P. (2011), "Experimental study of heterogeneities in strain and temperature fields at the microstructural level of polycrystalline metals through fully-coupled full-field measurements by digital image correlation and infrared thermography", Mech. Mater., 43(11), 654-670. crossref(new window)

9.
Borg, U. (2007), "A strain gradient crystal plasticity analysis of grain size effects in polycrystals", Eur. J. Mech. Solid., 26(2), 313-324. crossref(new window)

10.
Cermelli, P. and Gurtin, M.E. (2001), "On the characterization of the geometrically necessary dislocations in finite plasticity", J. Mech. Phys. Solid., 49(7), 1539-1568. crossref(new window)

11.
Clayton, J. and McDowell, D. (2004), "Homogenized finite elastoplasticity and damage: theory and computations", Mech. Mater., 36(9), 799-824. crossref(new window)

12.
Dimitrijevic, B.J. and Hackl, K. (2011), "A regularization framework for damage-plasticity models via gradient enhancement of the free energy", Int. J. Numer. Meter. Biol. Eng., 27(8), 1199-1210. crossref(new window)

13.
Dunne, F.P.E., Wilkinson, A.J. and Allen, R. (2007), "Experimental and computational studies of low cycle fatigue crack nucleation in a polycrystal", Int. J. Plast., 23(2), 273-295. crossref(new window)

14.
Ekh, M., Lillbacka, R. and Runesson, K. (2004), "A model framework for anisotropic damage coupled to crystal (visco)plasticity", Int. J. Plast., 20(12), 2143-2159. crossref(new window)

15.
Ekh, M., Grymer, M., Runesson, K. and Svedberg, T. (2007), "Gradient crystal plasticity as part of the computational modeling of polycrystals", Int. J. Numer. Meter. Eng., 72(2), 197-220. crossref(new window)

16.
Ekh, M., Bargmann, S. and Grymer, M. (2011), "Influence of grain boundary conditions on modeling of size-dependence in polycrystals", Acta Mechanica, 218(1-2), 103-113. crossref(new window)

17.
Evers, L.P., Brekelmanns, W.A.M. and Geers, M.G.D. (2004), "Non-local crystal plasticity model with intrinsic ssd and gnd effects", J. Mech. Phys. Solid., 52(10), 2379-2401. crossref(new window)

18.
Evers, L.P., Brekelmanns, W.A.M. and Geers, M.G.D. (2004a), "Scale dependent crystal plasticity framework with dislocation density and grain boundary effects", Int. J. Solid. Struct., 41(18), 5209-5230. crossref(new window)

19.
Fleck, N.A., Muller, G.M., Ashby, M.F. and Hutchinson, J.W. (1994), "Strain gradient plasticity: theory and experiment", Acta Metallurgica et Materialia, 42(2), 475-487. crossref(new window)

20.
Fleck, N.A. and Hutchinson, J.W. (1997), "Strain gradient plasticity", Adv. Appl. Mech., 33, 295-361. crossref(new window)

21.
Gurtin, M.E. (2004), "A gradient theory of small-deformation isotropic plasticity that accounts for the Burgers vector and for dissipation due to plastic spin", J. Mech. Phys. Solid., 52(11), 2545-2568. crossref(new window)

22.
Hakansson, P., Wallin, M. and Ristinmaa, M. (2008), "Prediction of stored energy in polycrystalline materials during cyclic loading", Int. J. Solid. Struct., 45(6), 1570-1586. crossref(new window)

23.
Heino, S. and Karlsson, B. (2001), "Cyclic deformation and fatigue behavior of 7Mo-0.5N superaustenitic stainless steel characteristics and development of the dislocation structures", Acta Materialia, 49(2), 353-363. crossref(new window)

24.
Horstemeyer, M., Ramaswamy, S. and Negrete, M. (2003), "Using a micromechanical finite element parametric study to motivate a phenomenological macroscale model for void/crack nucleation in aluminum with a hard second phase", Mech. Mater., 35(7), 675-687. crossref(new window)

25.
Hou, N., Wen, Z. and Yue, Z. (2009), "Creep behavior of single crystal superalloy specimen under temperature gradient condition", Mater. Sci. Eng., A510, 42-45.

26.
Husser, E., Lilleodden, E. and Bargmann, S. (2014), "Computational modeling of intrinsically induced strain gradients during compression of c-axis oriented magnesium single crystal", Acta Materialia, 71, 206-219. crossref(new window)

27.
Kroner, E. (1960), "Allgemeine kontinuumstheorie der versetzungen und eigenspannungen", Archiv. Ration. Mech. Anal., 4(1), 273-334.

28.
Kuroda, M. and Tvergaard, V. (2006), "Studies of scale dependent crystal viscoplasticity models", J. Mech. Phys. Solid., 54(9), 1789-1810. crossref(new window)

29.
Kuroda, M. and Tvergaard, V. (2008), "On the formulations of higher-order strain gradient crystal plasticity models", J. Mech. Phys. Solid., 56(4), 1591-1608. crossref(new window)

30.
Kuroda, M. and Tvergaard, V. (2008a), "A finite deformation theory of higher-order gradient crystal plasticity", J. Mech. Phys. Solid., 56(8), 2573-2584. crossref(new window)

31.
Lammer, H. and Tsakmakis, C. (2000), "Discussion of coupled elastoplasticity and damage constitutive equations for small and finite deformations", Int. J. Plast., 16(5), 495-523. crossref(new window)

32.
Lemaȋtre, J. (1992), A Course on Damage Mechanics.

33.
Levkovitch, V. and Svendsen, B. (2006), "On the large-deformation-and continuum-based formulation of models for extended crystal plasticity", Int. J. Solid. Struct., 43(24), 7246-7267. crossref(new window)

34.
McBride, A., Bargmann, S. and Reddy, D. (2015), "A computational investigation of a model of singlecrystal gradient thermoplasticity that accounts for the stored energy of cold work and thermal annealing", Compos. Mech., 55(4), 755-769. crossref(new window)

35.
Ohno, N. and Okumura, D. (2007), "Higher-order stress and grain size effects due to self-energy of geometrically necessary dislocations", J. Mech. Phys. Solid., 55(9), 1879-1898. crossref(new window)

36.
Parisot, R., Forest, S., Pineau, A., Grillon, F., Demonet, X. and Mataigne, J.-M. (2004), "Deformation and damage mechanisms of zinc coatings on hot-dip galvanized steel sheets: Part II. Damage modes", Metal. Mater. Trans. A, 35(3), 813-823. crossref(new window)

37.
Peerlings, R., Poh, L. and Geers, M. (2012), "An implicit gradient plasticity-damage theory for predicting size effects in hardening and softening", Eng. Fract. Mech., 95, 2-12. crossref(new window)

38.
Rice, J. (1971), "Inelastic constitutive relations for solids: an internal-variable theory and its application to metal plasticity", J. Mech. Phys. Solid., 19(6), 433-455. crossref(new window)

39.
Roters, F., Eisenlohr, P., Hantcherli, L., Tjahjanto, D., Bieler, T. and Raabe, D. (2010), "Overview of constitutive laws, kinematics, homogenization and multiscale methods in crystal plasticity finite-element modeling: Theory, experiments, applications", Acta Materialia, 58(4), 1152-1211. crossref(new window)

40.
Vrech, S.M. and Etse, G. (2007), "FE approach for thermodynamically consistent gradient-dependent plasticity", Latt. Am. Appl. Res., 37(2), 127-132.

41.
Welschinger, F. (2011), "A variational framework for gradient-extended dissipative continua. Application to damage mechanics, fracture, and plasticity", Ph.D. thesis, University of Stuttgart, Germany.

42.
Yefimov, S., Groma, I. and Giessen, E. van der (2004), "A comparison of a statistical-mechanics based plasticity model with discrete dislocation plasticity calculations", J. Mech. Phys. Solid., 52(2), 279-300. crossref(new window)

43.
Yefimov, S. and Giessen, E. van der (2005), "Multiple slip in a strain-gradient plasticity model motivated by a statistical-mechanics description of dislocations", Int. J. Solid. Struct., 42(11), 3375-3394. crossref(new window)