JOURNAL BROWSE
Search
Advanced SearchSearch Tips
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title :
  • Volume , Issue ,  , pp.-
  • Publisher :
  • DOI :
 Title & Authors

 
 Keywords
 Language
 Cited by
 References
1.
Lepri, S., Livi, R. and Politi, A. (2003), "Thermal conduction in classical low-dimensional lattices", Phys. Reports, 377(1), 1-80. crossref(new window)

2.
Andersen, H.C. (1980), "Molecular dynamics simulations at constant pressure and/or temperature", J. Chem. Phys., 72(4), 2384-2393. crossref(new window)

3.
Berendsen, H.J., Postma, J.V., van Gunsteren, W.F., DiNola, A.R.H.J. and Haak, J.R. (1984), "Molecular dynamics with coupling to an external bath", J. Chem. Phys., 81(8), 3684-3690. crossref(new window)

4.
Nose, S. (1984), "A unified formulation of the constant temperature molecular dynamics methods", J. Chem. Phys., 81(1), 511-519. crossref(new window)

5.
Hoover, W.G. (1985). "Canonical dynamics: equilibrium phase-space distributions", Phys. Rev. A., 31(3), 1695-1697. crossref(new window)

6.
Bussi, G. and Parrinello, M. (2007), "Accurate sampling using Langevin dynamics", Phys. Rev. E., 75(5), 056707. crossref(new window)

7.
Dhar, A. (2008), "Heat transport in low-dimensional systems", Adv. Phys., 57(5), 457-537. crossref(new window)

8.
Xiong, D., Zhang, Y. and Zhao, H. (2014), "Temperature dependence of heat conduction in the Fermi-Pasta-Ulam-beta lattice with next-nearest-neighbor coupling", Phys. Rev. E., 90(2), 022117.

9.
Hatano, T. (1999), "Heat conduction in the diatomic Toda lattice revisited", Phys. Rev. E., 59(1), R1-R4.

10.
Ai, B. and Hu, B. (2011), "Heat conduction in deformable Frenkel-Kontorova lattices: Thermal conductivity and negative differential thermal resistance", Phys. Rev. E., 83(1), 011131. crossref(new window)

11.
Giardina, C., Livi, R., Politi, A. and Vassalli, M. (2000), "Finite thermal conductivity in 1D lattices", Phys. Rev. L., 84(10), 2144-2147. crossref(new window)

12.
Zhong, Y., Zhang, Y., Wang, J. and Zhao, H. (2012), "Normal heat conduction in one-dimensional momentum conserving lattices with asymmetric interactions", Phys. Rev. E., 85(6), 060102.

13.
Savin, A.V. and Kosevich, Y.A. (2014), "Thermal conductivity of molecular chains with asymmetric potentials of pair interactions", Phys. Rev. E., 89(3), 032102.

14.
Dhar, A., Venkateshan, K. and Lebowitz, J.L. (2011), "Heat conduction in disordered harmonic lattices with energy-conserving noise", Phys. Rev. E., 83(2), 021108. crossref(new window)

15.
Jackson, E.A. and Mistriotis, A.D. (1989), "Thermal conductivity of one-and two-dimensional lattices", J. Phys. Condens. Matt., 1(7), 1223-1238. crossref(new window)

16.
Lippi, A. and Livi, R. (2000), "Heat conduction in two-dimensional nonlinear lattices", J. Stat. Phys., 100(5), 1147-1172. crossref(new window)

17.
Yang, L., Grassberger, P. and Hu, B. (2006), "Dimensional crossover of heat conduction in low dimensions", Phys. Rev. E., 74(6), 062101.

18.
Xiong, D., Wang, J., Zhang, Y. and Zhao, H. (2010), "Heat conduction in two-dimensional disk models", Phys. Rev. E., 82(3), 030101.

19.
Nishiguchi, N., Kawada, Y. and Sakuma, T. (1992), "Thermal conductivity in two-dimensional monatomic non-linear lattices", J. Phys. Condens. Matt., 4(50), 10227-10236. crossref(new window)

20.
Barik, D. (2006), "Heat conduction in 2D harmonic lattices with on-site potential", Europhys. Lett., 75(1), 42-48. crossref(new window)

21.
Yang, L. (2002), "Finite heat conduction in a 2D disorder lattice", Phys. Rev. Lett., 88(9), 094301. crossref(new window)

22.
Karpov, E.G., Park, H.S. and Liu, W.K. (2007), "A phonon heat bath approach for the atomistic and multiscale simulation of solids", Int. J. Numer. Method. Eng., 70(3), 351-378. crossref(new window)

23.
Tang, S. and Liu, B. (2015), "Heat jet approach for atomic simulations at finite temperature", Comm. Comput. Phys., 18(5), 1445-1460. crossref(new window)

24.
Pang, G. and Tang, S. (2011), "Time history kernel functions for square lattice", Comput. Mech., 48(6), 699-711. crossref(new window)

25.
Wang, X. and Tang, S. (2013), "Matching boundary conditions for lattice dynamics", Int. J. Numer. Method. Eng., 93(12), 1255-1285. crossref(new window)

26.
Tang, S. (2010), "A two-way interfacial condition for lattice simulations", Adv. Appl. Math. Mech., 2, 45-55.

27.
Born, M. and Huang, K. (1954), Dynamical theory of crystal lattices, Clarendon: Oxford.

28.
Tang, S. (2008), "A finite difference approach with velocity interfacial conditions for multiscale computations of crystalline solids", J. Comput. Phys., 227(8), 4038-4062. crossref(new window)

29.
Tang, S., Zhang, L., Ying, Y.P. and Zhang, Y.J., "A finite difference approach for finite temperature multiscale computations", preprint.