JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Topology and geometry optimization of different types of domes using ECBO
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Topology and geometry optimization of different types of domes using ECBO
Kaveh, A.; Rezaei, M.;
 
 Abstract
Domes are architectural and elegant structures which cover a vast area with no interrupting columns in the middle, and with suitable shapes can be also economical. Domes are built in a wide variety of forms and specialized terms are available to describe them. According to their form, domes are given special names such as network, lamella, Schwedler, ribbed, and geodesic domes. In this paper, an optimum topology design algorithm is performed using the enhanced colliding bodies optimization (ECBO) method. The network, lamella, ribbed and Schwedler domes are studied to determine the optimum number of rings, the optimum height of crown and tubular sections of these domes. The minimum volume of each dome is taken as the objective function. A simple procedure is defined to determine the dome structures configurations. This procedure includes calculating the joint coordinates and element constructions. The design constraints are implemented according to the provision of LRFD-AISC (Load and Resistance Factor Design-American Institute of Steel Constitution). The wind loading act on domes according to ASCE 7-05 (American Society of Civil Engineers). This paper will explore the efficiency of various type of domes and compare them at the first stage to investigate the performance of these domes under different kind of loading. At the second stage the wind load on optimum design of domes are investigated for Schwedler dome. Optimization process is performed via ECBO algorithm to demonstrate the effectiveness and robustness of the ECBO in creating optimal design for domes.
 Keywords
enhanced colliding bodies optimization;ribbed dome;Schwedler dome;lamella dome;network dome;wind load;
 Language
English
 Cited by
 References
1.
American Institute of Steel Construction (AISC) (1989), Manual of Steel Construction Allowable Stress Design, 9th ed. Chicago, AISC, USA.

2.
American Society of Civil Engineers (ASCE) (2006), Minimum design loads for buildings and other structures (ASCE-SEI 7-05).

3.
Babaei, M. and Sheidaei, M. (2013), "Optimal design of double layers scallop domes using genetic algorithm", Appl. Math. Model., 37(4), 2127-2138. crossref(new window)

4.
Dorigo, M., Maniezzo, V. and Colorni, A. (1996), "The ant system: optimization by a colony of cooperating agents", IEEE Trans. Syst. Man. Cybern. B, 26(1), 29-41. crossref(new window)

5.
Eberhart, R.C. and Kennedy, J. (1995), "A new optimizer using particle swarm theory", Proceedings of the Sixth International Symposium on Micro Machine and Human Science, Nagoya, Japan.

6.
Erol, O.K. and Eksin, I. (2006), "New optimization method: Big Bang-Big Crunch", Adv. Eng. Softw., 37(2), 106-111. crossref(new window)

7.
Fogel, L.J., Owens, A.J. and Walsh, M.J. (1966), Artificial Intelligence through Simulated Evolution, Wiley, Chichester, UK.

8.
Goncalves, M.S., Lopez, R.H. and Miguel, L.F.F. (2015), "Search group algorithm: A new metaheuristic method for the Optimization of truss structures", Comput. Struct., 153, 165-184. crossref(new window)

9.
Holland, J.H. (1975), Adaptation in Natural and Artificial Systems, Ann Arbor: University of Michigan Press, USA.

10.
Kamyab, R. and Salajegheh, E. (2013), "Size optimization of nonlinear scallop domes by an enhanced particle swarm algorithm", Int. J. Civ. Eng., 11(2), 77-89.

11.
Kaveh, A. and Forhoudi, N. (2013), "A new optimization method: dolphin echolocation", Adv. Eng. Softw., 59, 53-70. crossref(new window)

12.
Kaveh, A. and Ilchi Ghazaan, M. (2014a), "Enhanced colliding bodies optimization for design problems with continuous and discrete variables", Adv. Eng. Softw., 77, 66-75. crossref(new window)

13.
Kaveh, A. and Ilchi Ghazaan, M. (2014b), "Computer codes for colliding bodies optimization and its enhanced version", Int. J. Optim. Civ. Eng., 4(3), 321-332.

14.
Kaveh, A. and Khayatazad, M. (2012), "A novel meta-heuristic method: ray optimization", Comput. Struct., 112-113, 283-294.

15.
Kaveh, A. and Mahdavai, V.R. (2014a), "Colliding bodies optimization: a novel meta-heuristic method", Comput. Struct., 39, 18-27.

16.
Kaveh, A. and Mahdavi, V.R. (2014b), "Colliding bodies optimization method for optimum design of truss structures with continuous variables", Adv. Eng. Softw., 70, 1-12. crossref(new window)

17.
Kaveh, A. and Mahdavi, V.R. (2015), Colliding Bodies Optimization; Extensions and Applications, Springer Verlag, Switzerland.

18.
Kaveh, A. and Talatahari, S. (2009), "Size optimization of space trusses using Big Bang-Big Crunch algorithm", Comput. Struct., 87(17-18), 1129-1140. crossref(new window)

19.
Kaveh, A. and Talatahari, S. (2010a), "A novel heuristic optimization method: charged system search", Acta Mech., 213(3-4), 267-289. crossref(new window)

20.
Kaveh, A. and Talatahari, S. (2010b), "Optimal design of Schwedler and ribbed domes via hybrid Big Bang- Big Crunch algorithm", J. Construct. Steel Res., 66(3), 412-419. crossref(new window)

21.
Kaveh, A. and Talatahari, S. (2010c), "Optimal design of single layer domes using meta-heuristic algorithms; a comparative study", Int. J. Space Struct., 25(4), 217-227. crossref(new window)

22.
Kaveh, A. and Talatahari, S. (2011), "Geometry and topology optimization of geodesic domes using charged system search", Struct. Multidiscip. Optim., 43(2), 215-229. crossref(new window)

23.
Kociecki, M. and Adeli, H. (2013), "Two-phase genetic algorithm for size optimization of free-form steel space frame roof structures", J. Construct. Steel Res., 90, 283-296. crossref(new window)

24.
Mirjalili, S. (2015), "The ant lion optimizer", Adv. Eng. Softw., 83, 80-98. crossref(new window)

25.
Rao, R.V., Savsani, V.J. and Vakharia, D.P. (2011), "Teaching-learning-based optimization: A novel method for constrained mechanical design optimization problems", Comput. Aided Des., 43(3), 303-315. crossref(new window)

26.
Sadollah, A., Eskandar, H., Bahreininejad, A. and Kim, J.H. (2015), "Water cycle, mine blast and improved mine blast algorithms for discrete sizing optimization of truss structures", Comput. Struct., 149, 1-16. crossref(new window)

27.
Saka, M.P. (2007), "Optimum geometry design of geodesic domes using harmony search algorithm", Adv. Struct. Eng., 10(6), 595-606. crossref(new window)

28.
Saka, M.P. and Geem, Z.W. (2013), "Mathematical and met heuristic applications in design optimization of steel frame structures: an extensive review", Math. Prob. Eng., Article ID 271031, 33 pages.

29.
Wenzhheng, L. and Jihong, Y. (2014), "Collapse optimization for domes under earthquake using a genetic simulated annealing algorithm", J. Constr. Steel Res., 97, 59-68. crossref(new window)