JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Fibrin affects short-term in vitro human mesenchymal stromal cell responses to magneto-active fibre networks
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Fibrin affects short-term in vitro human mesenchymal stromal cell responses to magneto-active fibre networks
Spear, Rose L.; Symeonidou, Antonia; Skepper, Jeremy N.; Brooks, Roger A.; Markaki, Athina E.;
 
 Abstract
Successful integration of cementless femoral stems using porous surfaces relies on effective periimplant bone healing to secure the bone-implant interface. The initial stages of the healing process involve protein adsorption, fibrin clot formation and cell osteoconduction onto the implant surface. Modelling this process in vitro, the current work considered the effect of fibrin deposition on the responses of human mesenchymal stromal cells cultured on ferritic fibre networks intended for magneto-mechanical actuation of in-growing bone tissue. The underlying hypothesis for the study was that fibrin deposition would support early stromal cell attachment and physiological functions within the optimal regions for strain transmission to the cells in the fibre networks. Highly porous fibre networks composed of 444 ferritic stainless steel were selected due to their ability to support human osteoblasts and mesenchymal stromal cells without inducing untoward inflammatory responses in vitro. Cell attachment, proliferation, metabolic activity, differentiation and penetration into the ferritic fibre networks were examined for one week. For all fibrin-containing samples, cells were observed on and between the metal fibres, supported by the deposited fibrin, while cells on fibrin-free fibre networks (control surface) attached only onto fibre surfaces and junctions. Initial cell attachment, measured by analysis of deoxyribonucleic acid, increased significantly with increasing fibrinogen concentration within the physiological range. Despite higher cell numbers on fibrin-containing samples, similar metabolic activities to control surfaces were observed, which significantly increased for all samples over the duration of the study. It is concluded that fibrin deposition can support the early attachment of viable mesenchymal stromal cells within the inter-fibre spaces of fibre networks intended for magneto-mechanical strain transduction to in-growing cells.
 Keywords
human mesenchymal stromal cells;fibrin;fibre networks;ferritic stainless steel;porous coatings;
 Language
English
 Cited by
 References
1.
Arneson, D. (1976), "Quantitative-analysis of plasma fibrin monomer", Thrombosis Res., 8(1), 31-41. crossref(new window)

2.
Barsotti, M.C., Magera, A., Armani, C., Chiellini, F., Felice, F., Dinucci, D., Piras, A.M., Minnocci, A., Solaro, R., Soldani, G., Balbarini, A. and Di Stefano, R. (2011), "Fibrin acts as biomimetic niche inducing both differentiation and stem cell marker expression of early human endothelial progenitor cells", Cell Proliferation, 44(1), 33-48. crossref(new window)

3.
Bianco, P., Cao, X., Frenette, P.S., Mao, J.J., Robey, P.G., Simmons, P.J. and Wang, C.Y. (2013), "The meaning, the sense and the significance: translating the science of mesenchymal stem cells into medicine", Nat. Med., 19(1), 35-42. crossref(new window)

4.
Caplan, A.I. (1991), "Mesenchymal stem cells", J. Orthop. Res., 9(5), 641-650. crossref(new window)

5.
Clause, K.C., Liu, L.J. and Tobita, K. (2010), "Directed stem cell differentiation: the role of physical forces", Cell Commun. Adhesion, 17(2), 48-54. crossref(new window)

6.
Colley, H., McArthur, S.L., Stolzing, A. and Scutt, A. (2012), "Culture on fibrin matrices maintains the colony-forming capacity and osteoblastic differentiation of mesenchymal stem cells", Biomed. Mater., 7(4), 045015. crossref(new window)

7.
Cox, S., Cole, M. and Tawil, B. (2004), "Behavior of human dermal fibroblasts in three-dimensional fibrin clots: Dependence on fibrinogen and thrombin concentration", Tissue Eng., 10(5-6), 942-954. crossref(new window)

8.
Currie, L.J., Sharpe, J.R. and Martin, R. (2001), "The use of fibrin glue in skin grafts and tissue-engineered skin replacements: A review", Plastic Reconstruct. Surg., 108(6), 1713-1726. crossref(new window)

9.
Dominici, M., Le Blanc, K., Mueller, I., Slaper-Cortenbach, I., Marini, F.C., Krause, D.S., Deans, R.J., Keating, A., Prockop, D.J. and Horwitz, E.M. (2006), "Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement", Cytother., 8(4), 315-317. crossref(new window)

10.
Doolittle, R.F. (1984), "Fibrinogen and fibrin", Ann. Rev. Biochem., 53(1), 195-229. crossref(new window)

11.
Engler, A.J., Sen, S., Sweeney, H.L. and Discher, D.E. (2006), "Matrix elasticity directs stem cell lineage specification", Cell, 126(4), 677-689. crossref(new window)

12.
Eyrich, D., Brandl, F., Appel, B., Wiese, H., Maier, G., Wenzel, M., Staudenmaier, R., Goepferich, A. and Blunk, T. (2007), "Long-term stable fibrin gels for cartilage engineering", Biomater., 28(1), 55-65. crossref(new window)

13.
Giddings, J.C. and Bloom, A.L. (1971), "Study of 2 methods for estimating plasma fibrinogen and effect of epsilon aminocaproic acid and protamine", J. Clin. Pathol., 24(5), 467-471. crossref(new window)

14.
Gorodetsky, R., Clark, R.A.F., An, J.Q., Gailit, J., Levdansky, L., Vexler, A., Berman, E. and Marx, G. (1999), "Fibrin microbeads (FMB) as biodegradable carriers for culturing cells and for accelerating wound healing", J. Invest. Dermatol., 112(6), 866-872. crossref(new window)

15.
Guilak, F., Cohen, D.M., Estes, B.T., Gimble, J.M., Liedtke, W. and Chen, C.S. (2009), "Control of stem cell fate by physical interactions with the extracellular matrix", Cell Stem Cell, 5(1), 17-26. crossref(new window)

16.
Ho, W., Tawil, B., Dunn, J.C.Y. and Wu, B.M. (2006), "The behavior of human mesenchymal stem cells in 3D fibrin clots: Dependence on fibrinogen concentration and clot structure", Tissue Eng., 12(6), 1587-1595. crossref(new window)

17.
Jackson, M.R. (2001), "Fibrin sealants in surgical practice: An overview", Am. J. Surg., 182(2), S1-S7.

18.
Kratz, A., Ferraro, M., Sluss, P.M. and Lewandrowski, K.B. (2004), "Laboratory reference value", New England J. Med., 351(15), 1548-1563. crossref(new window)

19.
Kuzyk, P.R.T. and Schemitsch, E.H. (2011), "The basic science of peri-implant bone healing", Indian J. Orthop., 45(2), 108-115. crossref(new window)

20.
Lalu, M.M., McIntyre, L., Pugliese, C., Fergusson, D., Winston, B.W., Marshall, J.C., Granton, J., Stewart, D.J. and Canadian Critical Care Trials, G. (2012), "Safety of cell therapy with mesenchymal stromal cells (SafeCell): A systematic review and meta-analysis of clinical trials", PLoS ONE, 7(10), e47559. crossref(new window)

21.
Lancaster, M.V. and Fields, R.D. (1996), Antibiotic and cytotoxic drug susceptibility assays using resazurin and poising agents, Alamar Biosciences Laboratory, Inc.: 2313.

22.
Lei, P., Padmashali, R.M. and Andreadis, S.T. (2009), "Cell-controlled and spatially arrayed gene delivery from fibrin hydrogels", Biomater., 30(22), 3790-3799. crossref(new window)

23.
Malheiro, V.N., Skepper, J.N., Brooks, R.A. and Markaki, A.E. (2013), "In vitro osteoblast response to ferritic stainless steel fiber networks for magneto-active layers on implants", J. Biomed. Mater. Res. Part A, 101A(6), 1588-1598. crossref(new window)

24.
Malheiro, V.N., Spear, R.L., Brooks, R.A. and Markaki, A.E. (2011), "Osteoblast and monocyte responses to 444 ferritic stainless steel intended for a Magneto-Mechanically Actuated Fibrous Scaffold", Biomater., 32(29), 6883-6892. crossref(new window)

25.
Markaki, A.E. and Clyne, T.W. (2004), "Magneto-mechanical stimulation of bone growth in a bonded array of ferromagnetic fibres", Biomater., 25(19), 4805-4815. crossref(new window)

26.
Markaki, A.E. and Clyne, T.W. (2005), "Magneto-mechanical actuation of bonded ferromagnetic fibre arrays", Acta Materialia, 53(3), 877-889. crossref(new window)

27.
Markaki, A.E. and Justin, A.W. (2014), "A magneto-active scaffold for stimulation of bone growth", Mater. Sci. Technol., 30(13A), 1590-1597. crossref(new window)

28.
Mosesson, M.W. (2005), "Fibrinogen and fibrin structure and functions", J. Thrombos. Haemostas., 3(8), 1894-1904. crossref(new window)

29.
Mosesson, M.W., Siebenlist, K.R. and Meh, D.A. (2001), "The structure and biological features of fibrinogen and fibrin", Ann. NY. Academy Sci., 936(1), 11-30.

30.
Neelakantan, S., Bosbach, W., Woodhouse, J. and Markaki, A.E. (2014), "Characterization and deformation response of orthotropic fibre networks with auxetic out-of-plane behaviour", Acta Materialia, 66, 326-339. crossref(new window)

31.
Nilsson, K.G., Henricson, A., Norgren, B. and Dalen, T. (2006), "Uncemented HA-coated implant is the optimum fixation for TKA in the young patient", Clinic. Orthop. Relat. Res., 448, 129-139. crossref(new window)

32.
Pittenger, M.F., Mackay, A.M., Beck, S.C., Jaiswal, R.K., Douglas, R., Mosca, J.D., Moorman, M.A., Simonetti, D.W., Craig, S. and Marshak, D.R. (1999), "Multilineage potential of adult human mesenchymal stem cells", Sci., 284(5411), 143-147. crossref(new window)

33.
Silverman, R.P., Passaretti, D., Huang, W., Randolph, M.A. and Yaremchuk, M. (1999), "Injectable tissue-engineered cartilage using a fibrin glue polymer", Plastic Reconstruct. Surg., 103(7), 1809-1818. crossref(new window)

34.
Spear, R.L., Symeonidou, A., Brooks, R.A. and Markaki, A.E. (2015), "In vitro assessment of porous magneto-active coatings for implant osseointegration", Reference Module in Materials Science and Materials Engineering, S. Hashmi, Elsevier, in press.

35.
Spear, R.L., Brooks, R.A. and Markaki, A.E. (2013), "Short-term in vitro responses of human peripheral blood monocytes to ferritic stainless steel fiber networks", J. Biomed. Mater. Res. Part A, 101(5), 1456-1463. crossref(new window)

36.
Spear, R.L., Srigengan, B., Neelakantan, S., Bosbach, W., Brooks, R.A. and Markaki, A.E. (2015), "Physical and biological characterization of ferromagnetic fiber networks: effect of fibrin deposition on short-term in vitro responses of human osteoblasts", Tissue Eng. Part A, 21(3-4), 463-474. crossref(new window)

37.
Symeonidou, A., Spear, R.L., Brooks, R.A. and Markaki, A.E. (2013), "Human mesenchymal stem cell response to 444 ferritic stainless steel networks", MRS Online Proceedings Library, 1569, 73-78.

38.
Vavken, P., Joshi, S.M. and Murray, M.M. (2011), "Fibrin concentration affects ACL fibroblast proliferation and collagen synthesis", Knee, 18(1), 42-46. crossref(new window)

39.
Wong, C., Inman, E., Spaethe, R. and Helgerson, S. (2003), "Fibrin-based biomaterials to deliver human growth factors", Thrombos. Haemostas., 89(3), 573-582.

40.
Yamada, Y., Boo, J.S., Ozawa, R., Nagsaka, T., Okazaki, Y., Hata, K. and Ueda, M. (2003), "Bone regeneration following injection of mesenchymal stem cells and fibrin glue with a biodegradable scaffold", J. Cranio-Maxillofacial Surg., 31(1), 27-33. crossref(new window)

41.
Zaher, W., Harkness, L., Jafari, A. and Kassem, M. (2014), "An update of human mesenchymal stem cell biology and their clinical uses", Archive Toxicol., 88(5), 1069-1082. crossref(new window)