JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Drilling force and speed for mandibular trabecular bone in oral implant surgery
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Drilling force and speed for mandibular trabecular bone in oral implant surgery
bin Kamisan, Mohammad Aimaduddin Atiq; Yokota, Kenichiro; Ueno, Takayuki; Kinoshita, Hideaki; Homma, Shinya; Yajima, Yasutomo; Abe, Shinichi; Takano, Naoki;
 
 Abstract
Based on a survey done recently in Japan, 30 percent of the serious accidents occurred in oral implant surgery were concerned with the mandibular canal and 3/4 of them were related to drilling. One of the reasons lies in the lack of the education system. To overcome this problem, a new educational system focusing on drilling the mandibular trabecular bone has been developed mainly for dental college students in the form of an oral implant surgery training simulator that enables student to sense the reaction force during drilling. On the other hand, the conventional system uses polymeric model. Based on these systems, two approaches were proposed; the evaluation by experienced clinicians using the simulator, and experimental works on the polymeric model. Focusing on the combination of the drilling force sensed and drilling speed obtained through both approaches, the results were compared. It was found that the polymeric models were much softer especially near the mandibular canal. In addition, the study gave us an insight of the understanding in bone quality through tactile sensation of the drilling force and speed. Furthermore, the clinicians positively reviewed the simulator as a valid tool.
 Keywords
oral implant;drilling force;drilling speed;trabecular bone;mandibular;
 Language
English
 Cited by
 References
1.
Albrektsson, T., Sennerby, L. and Wennerberg, A. (2008), "State of the art of oral implants", Periodontol. 2000, 47(1), 15-26. crossref(new window)

2.
Augustin, G., Davila, S., Mihoci, K., Udiljak, T., Vedrina, D.S. and Antabak, A. (2008), "Thermal osteonecrosis and bone drilling parameters revisited", Arch. Orthop. Trauma Surg., 128(1), 71-77.

3.
Basler, S.E., Traxler, J., Muller, R. and van Lenthe, G.H. (2013), "Peri-implant bone microstructure determines dynamic implant cut-out", Med. Eng. Phys., 35(10), 1442-1449. crossref(new window)

4.
Bonnet, A.S., Postaire, M. and Lipinski, P. (2009), "Biomechanical study of mandible bone supporting a four-implant retained bridge. Finite element analysis of the influence of bone anisotropy and foodstuff position", Med. Eng. Phys., 31(7), 806-815. crossref(new window)

5.
Chang, S.H., Lin, C.L., Hsue, S.S., Lin, Y.S. and Huang, S.R. (2012), "Biomechanical analysis of the effects of implant diameter and bone quality in short implants placed in the atrophic posterior maxilla", Med. Eng. Phys., 34(2), 153-160. crossref(new window)

6.
Chrcanovic, B.R., Albrektsson, T. and Wennerberg, A. (2014), "Reasons for failures of oral implants", J. Oral Rehabil., 41(6), 443-476. crossref(new window)

7.
De Bruyn, H., Koole, S., Mattheos, N. and Lang, N.P. (2009), "A survey on undergraduate implant dentistry education in Europe", Eur. J. Dent. Edu., 13(Suppl. 1), 3-9. crossref(new window)

8.
Dempster, D.W. (2000), "The contribution of trabecular architecture to cancellous bone quality". J. Bone Miner. Res., 15(1), 20-23. crossref(new window)

9.
Donos, N., Mardas, N. and Buser, D. (2009), "An outline of competencies and the appropriate postgraduate educational pathways in implant dentistry", Eur. J. Dent. Edu., 13(Suppl. 1), 44-54. crossref(new window)

10.
Friberg, B., Sennerby, L., Roos, J. and Lekholm, U. (1995), "Identification of bone quality in conjunction with insertion of titanium implants. A pilot study in jaw autopsy specimens", Clin. Oral Implants Res., 6(4), 213-219. crossref(new window)

11.
Haïat, G., Wang, H.L. and Brunski, J. (2013), "Effects of biomechanical properties of the bone-implant interface on dental implant stability: From in silico approaches to the patient's mouth", Annu. Rev. Biomed. Eng., 16, 187-213.

12.
Japan Acad. Maxillofac. Implant (2011), "Reporting of Emergency Survey on Serious Medical Trouble Related to Implant Surgery (Preliminary)".

13.
Kim, S.J., Yoo, J., Kim, Y.S. and Shin, S.W. (2010), "Temperature change in pig rib bone during implant site preparation by low-speed drilling", J. Appl. Oral Sci., 18(5), 522-527. crossref(new window)

14.
Kusumoto, N., Sohmura, T., Yamada, S., Wakabayashi, K., Nakamura, T. and Yatani, H. (2006), "Application of virtual reality force feedback haptic device for oral implant surgery", Clin. Oral Implants Res., 17(6), 708-713. crossref(new window)

15.
Lekholm, U. (1985), "Patient selection and preparation", Tissue-Integrated Prosthes Osseointegration Clin. Dent., 199-209.

16.
Limbert, G., van Lierde, C., Muraru, O.L., Walboomers, X.F., Frank, M., Hansson, S., Middleton, J. and Jaecques, S. (2010), "Trabecular bone strains around a dental implant and associated micromotions--a micro-CT-based three-dimensional finite element study", J. Biomech., 43(7), 1251-1261. crossref(new window)

17.
Mathieu, V., Vayron, R., Richard, G., Lambert, G., Naili, S., Meningaud, J.P. and Haiat, G. (2014), "Biomechanical determinants of the stability of dental implants: Influence of the bone-implant interface properties", J. Biomech., 47(1), 3-13. crossref(new window)

18.
Matsunaga, S., Shirakura, Y., Ohashi, T., Nakahara, K., Tamatsu, Y., Takano, N. and Ide, Y. (2010), "Biomechanical role of peri-implant cancellous bone architecture", Int. J. Prosthodont., 23(4), 333-338.

19.
Matsunaga, S., Takano, N., Tamatsu, Y., Abe, S. and Ide, Y. (2011), "Biomechanics of jaw bone considering structural properties of trabecular bone", J. Oral Biosci., 53(2), 143-147. crossref(new window)

20.
Mattheos, N., Albrektsson, T., Buser, D., De Bruyn, H., Donos, N., Hjorting Hansen, E., Lang, N.P., Sanz, M. and Nattestad, A. (2009), "Teaching and assessment of implant dentistry in undergraduate and postgraduate education: A European consensus", Eur. J. Dent. Edu., 13(Suppl. 1), 10-17.

21.
Mattheos, N., Wismeijer, D. and Shapira, L. (2014), "Implant dentistry in postgraduate university education. Present conditions, potential, limitations and future trends", Eur. J. Dent. Edu., 18(Suppl. 1), 24-32.

22.
Melo, M.D., Shafie, H. and Obeid, G. (2006), "Implant survival rates for oral and maxillofacial surgery residents: A retrospective clinical review with analysis of resident level of training on implant survival", J. Oral Maxillofac. Surg., 64(8), 1185-1189. crossref(new window)

23.
Misch, C., Qu, Z. and Bidez, M. (1999), "Mechanical properties of trabecular bone in the human mandible:implications for dental implant treatment planning and surgical placement", J. Oral Maxillofac. Surg., 57, 700-706. crossref(new window)

24.
NIH Consens. Statement (2000), "Osteoporosis prevention, diagnosis, and therapy", 17(1), 1-45.

25.
Ohashi, T., Matsunaga, S., Nakahara, K., Abe, S., Ide, Y., Tamatsu, Y. and Takano, N. (2010), "Biomechanical role of peri-implant trabecular structures during vertical loading", Clin. Oral Investig., 14(5), 507-513. crossref(new window)

26.
Pothuaud, L., Van Rietbergen, B., Mosekilde, L., Beuf, O., Levitz, P., Benhamou, C.L. and Majumdar, S. (2002), "Combination of topological parameters and bone volume fraction better predicts the mechanical properties of trabecular bone", J. Biomech., 35(8), 1091-1099. crossref(new window)

27.
Rhienmora, P., Haddawy, P., Khanal, P., Suebnukarn, S. and Dailey, M.N. (2010), "A virtual reality simulator for teaching and evaluating dental procedures", Meth. Inf. Med., 49(4), 396-405. crossref(new window)

28.
Sansalone, V., Bousson, V., Naili, S., Bergot, C., Peyrin, F., Laredo, J.D. and Haiat, G. (2012), "Anatomical distribution of the degree of mineralization of bone tissue in human femoral neck: Impact on biomechanical properties", Bone, 50(4), 876-884. crossref(new window)

29.
Sugaya, K. (1990), "Study on method for examining bone quality for dental implant. Relationship between cutting force and bone mineral content", Shikwa Gakuho, 90(4), 607-633.

30.
Sui, J., Sugita, N., Ishii, K., Harada, K. and Mitsuishi, M. (2014), "Mechanistic modeling of bone-drilling process with experimental validation", J. Mater. Process Technol., 214(4), 1018-1026. crossref(new window)

31.
Ucer, T.C., Botticelli, D., Stavropoulos, A. and Mattheos, N. (2014), "Current trends and status of continuing professional development in implant dentistry in Europe", Eur. J. Dent. Educ., 18(Suppl. 1), 52-59. crossref(new window)

32.
Urbankova, A. (2010), "Impact of computerized dental simulation training on preclinical operative dentistry examination scores", J. Dent. Edu., 74(4), 402-409.

33.
Van De Velde, T., Glor, F. and De Bruyn, H. (2008), "A model study on flapless implant placement by clinicians with a different experience level in implant surgery", Clin. Oral Implants Res., 19(1), 66-72.

34.
Wierinck, E.R., Puttemans, V., Swinnen, S.P. and van Steenberghe, D. (2007), "Expert performance on a virtual reality simulation system", J. Dent. Edu., 71(6), 759-766.

35.
Yeniyol, S., Jimbo, R., Marin, C., Tovar, N., Janal, M.N. and Coelho, P.G. (2013), "The effect of drilling speed on early bone healing to oral implant", Oral Surg. Oral Med. Oral Pathol. Oral Radio., 116(5), 550-555. crossref(new window)