Advanced SearchSearch Tips
Conjugation of mono-sulfobetaine to alkyne-PPX films via click reaction to reduce cell adhesion
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Conjugation of mono-sulfobetaine to alkyne-PPX films via click reaction to reduce cell adhesion
Chien, Hsiu-Wen; Keng, Ming-Chun; Chen, Hsien-Yeh; Huang, Sheng-Tung; Tsai, Wei-Bor;
A surface resisting protein adsorption and cell adhesion is highly desirable for many biomedical applications such as diagnostic devices, biosensors and blood-contacting devices. In this study, a surface conjugated with sulfobetaine molecules was fabricated via the click reaction for the anti-fouling purpose. An alkyne-containing substrate (Alkyne-PPX) was generated by chemical vapor deposition of 4-ethynyl-[2,2]paracyclophane. Azide-ended mono-sulfobetaine molecules were synthesized and then conjugated on Alkyne-PPX via the click reaction. The protein adsorption from 10% serum was reduced by 57%, while the attachment of L929 cells was reduced by 83% onto the sulfobetaine-PPX surface compared to the protein adsorption and cell adhesion on Alkyne-PPX. In conclusion, we demonstrate that conjugation of mono-sulfobetaine molecules via the click chemistry is an effective way for reduction of non-specific protein adsorption and cell attachment.
anti-fouling;sulfobetaine;cell adhesion;protein adsorption;click chemistry;
 Cited by
Babacan, S., P., Pivarnik, S., Letcher and A.G., Rand (2000), "Evaluation of antibody immobilization methods for piezoelectric biosensor application", Biosens. Bioelectron., 15(11-12), 615-621. crossref(new window)

Banerjee, I., R.C., Pangule and R.S., Kane (2011), "Antifouling coatings: Recent developments in the design of surfaces that prevent fouling by proteins, bacteria, and marine organisms", Adv. Mater., 23(6), 690-718. crossref(new window)

Chang, C.H., S.Y., Yeh, B.H., Lee, C.W., Hsu, Y.C., Chen, C.J., Chen, T.J., Lin, M.H.C., Chen, C.T., Huang and H.Y., Chen (2014), "Compatibility balanced antibacterial modification based on vapor-deposited parylene coatings for biomaterials", J. Mater. Chem. B, 2(48), 8496-8503. crossref(new window)

Chang, Y., S., Chen, Z., Zhang and S., Jiang (2006), "Highly protein-resistant coatings from well-defined diblock copolymers containing sulfobetaines", Langmuir, 22(5), 2222-2226. crossref(new window)

Chen, H.-Y., J.H., Lai, X., Jiang and J., Lahann (2008a), "Substrate-selective chemical vapor deposition of reactive polymer coatings", Adv. Mater., 20(18), 3474-3480. crossref(new window)

Chen, H.-Y., A.A., McClelland, Z., Chen and J., Lahann (2008b), "Solventless adhesive bonding using reactive polymer coatings", Anal. Chem., 80(11), 4119-4124. crossref(new window)

Chen, S., J., Zheng, L., Li and S., Jiang (2005), "Strong resistance of phosphorylcholine self-assembled monolayers to protein adsorption: Insights into nonfouling properties of zwitterionic materials", JACS 127(41), 14473-14478. crossref(new window)

Chien, H.W., M.C., Keng, M.J., Wang, H.Y., Chen, S.T., Huang and W.B., Tsai (2014), "Conjugation of monocarboxybetaine molecules on Amino-Poly-p-xylylene films to reduce protein adsorption and cell adhesion", Langmuir, 30(47), 14257-14262. crossref(new window)

Chien, H.W., C.C., Tsai, W.B., Tsai, M.J., Wang, W.H., Kuo, T.C., Wei and S.T., Huang (2013), "Surface conjugation of zwitterionic polymers to inhibit cell adhesion and protein adsorption", Colloid. Surf. B Biointerf., 107, 152-159. crossref(new window)

Diaz Blanco, C., A., Ortner, R., Dimitrov, A., Navarro, E., Mendoza and T., Tzanov (2014), "Building an antifouling zwitterionic coating on urinary catheters using an enzymatically triggered bottom-up approach", ACS Appl. Mater. Interf., 6(14), 11385-11393. crossref(new window)

Feng, W. and S.P., Zhu (2005), "Adsorption of fibrinogen and lysozyme on silicon grafted with poly(2-methacryloyloxyethyl phosphorylcholine) via surface-initiated atom transfer radical polymerization", Langmuir, 21(13), 5980-5987. crossref(new window)

Huang, C.J. and Y.C., Chang (2014), "In situ surface tailoring with zwitterionic carboxybetaine moieties on self-assembled thin film for antifouling biointerfaces", Mater., 7(1), 130-142.

Huang, J.J. and W.L., Xu (2011), "Efficient synthesis of zwitterionic sulfobetaine group functional polyurethanes via "Click" Reaction", J. Appl. Polym. Sci., 122(2), 1251-1257. crossref(new window)

Inoue, Y. and K., Ishihara (2010), "Reduction of protein adsorption on well-characterized polymer brush layers with varying chemical structures", Colloid. Surf. B Biointerf., 81(1), 350-357. crossref(new window)

Jiang, S. and Z., Cao (2010), "Ultralow-fouling, functionalizable, and hydrolyzable zwitterionic materials and their derivatives for biological applications", Adv. Mater., 22(9), 920-932. crossref(new window)

Kolb, H.C., M.G., Finn and K.B., Sharpless (2001), "Click chemistry: diverse chemical function from a few good reactions", Angew. Chem. Int. Ed. Engl., 40(11), 2004-2021. crossref(new window)

Kuo, W.H., M.J., Wang, C.W., Chang, T.C., Wei, J.Y., Lai, W.B., Tsai and C., Lee (2012), "Improvement of hemocompatibility on materials by photoimmobilization of poly(ethylene glycol)", J. Mater. Chem., 22(19), 9991-9999. crossref(new window)

Kuo, W.H., M.J., Wang, H.W., Chien, T.C., Wei, C., Lee and W.B., Tsai (2011), "Surface modification with poly(sulfobetaine methacrylate-co-acrylic acid) to reduce fibrinogen adsorption, platelet adhesion, and plasma coagulation", Biomacromolecules, 12(12), 4348-4356. crossref(new window)

Liu, Q.S., A., Singh, R., Lalani and L., Y., Liu (2012), "Ultralow fouling polyacrylamide on gold surfaces via surface-initiated atom transfer radical polymerization", Biomacromolecules, 13(4), 1086-1092. crossref(new window)

Maeta, E. and K., Ishihara (2014), "Cross-linkable and water-soluble phospholipid polymer as artificial extracellular matrix", Biomater. Biomed. Eng., 1(3), 163-174.

McArthur, S.L., K.M., McLean, P., Kingshott, H.A., W. St John, R.C., Chatelier and H.J., Griesser (2000), "Effect of polysaccharide structure on protein adsorption", Colloid Surf. B, 17(1), 37-48. crossref(new window)

Nandivada, H., H.Y., Chen, L., Bondarenko and J., Lahann (2006), "Reactive polymer coatings that "Click"", Angew. Chem. Int. Ed. Engl., 45(20), 3360-3363. crossref(new window)

Nguyen, A.T., J., Baggerman, J.M.J., Paulusse, C.J.M., van Rijn and H., Zuilhof (2011), "Stable protein-repellent zwitterionic polymer brushes grafted from silicon nitride", Langmuir, 27(6), 2587-2594. crossref(new window)

Ratner, B.D. (1993), "The blood compatibility catastrophe", J. Biomed. Mater. Res., 27(3), 283-287. crossref(new window)

Rostovtsev, V.V., L.G., Green, V.V., Fokin and K.B., Sharpless (2002), "A stepwise Huisgen cycloaddition process: Copper(I)-catalyzed regioselective "ligation" of azides and terminal alkynes", Angew. Chem. Int. Ed. Engl., 114(14), 2596-2711.

Shen, C.H. and J.C., Lin (2013), "Solvent and concentration effects on the surface characteristics and platelet compatibility of zwitterionic sulfobetaine-terminated self-assembled monolayers", Colloid. Surf. B Biointerf., 101, 376-383. crossref(new window)

Tornoe, C.W., C., Christensen and M., Meldal (2002), "Peptidotriazoles on solid phase: [1,2,3]-triazoles by regiospecific copper(I)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides", J. Org. Chem., 67(9), 3057-3064. crossref(new window)

Wu, L.X., Z., Guo, S., Meng, W., Zhong, Q.G., Du and L.S.L., Chou (2010), "Synthesis of a zwitterionic silane and Its application in the surface modification of silicon-based material surfaces for improved hemocompatibility", Acs. Appl. Mater. Interf., 2(10), 2781-2788. crossref(new window)

Yang, W., H., Xue, W., Li, J., Zhang and S., Jiang (2009), "Pursuing "zero" protein adsorption of poly(carboxybetaine) from undiluted blood serum and plasma", Langmuir, 25(19), 11911-11916. crossref(new window)

Ye, S.H., C.A.J., Johnson, J.R., Woolley, H., Murata, L.J., Gamble, K., Ishihara and W.R., Wagner (2010), "Simple surface modification of a titanium alloy with silanated zwitterionic phosphorylcholine or sulfobetaine modifiers to reduce thrombogenicity", Colloid. Surf. B Biointerf., 79(2), 357-364. crossref(new window)

Zhang, Z., S., Chen, Y., Chang and S., Jiang (2006), "Surface grafted sulfobetaine polymers via atom transfer radical polymerization as superlow fouling coatings", J. Phys. Chem. B, 110(22), 10799-10804.

Zhao, C., L.Y., Li, Q.M., Wang, Q.M., Yu and J., Zheng (2011), "Effect of Film Thickness on the Antifouling Performance of Poly(hydroxy-functional methacrylates) Grafted Surfaces", Langmuir, 27(8), 4906-4913. crossref(new window)