JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Reaction Route to the Crystallization of Copper Oxides
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Reaction Route to the Crystallization of Copper Oxides
Chen, Kunfeng; Xue, Dongfeng;
  PDF(new window)
 Abstract
Copper is an important component from coin metal to electronic wire, integrated circuit, and to lithium battery. Copper oxides, mainly including and CuO, are important semiconductors for the wide applications in solar cell, catalysis, lithium-ion battery, and sensor. Due to their low cost, low toxicity, and easy synthesis, copper oxides have received much research interest in recent year. Herein, we review the crystallization of copper oxides by designing various chemical reaction routes, for example, the synthesis of by reduction route, the oxidation of copper to or CuO, the chemical transformation of to CuO, the chemical precipitation of CuO. In the designed reaction system, ligands, pH, inorganic ions, temperature were used to control both chemical reactions and the crystallization processes, which finally determined the phases, morphologies and sizes of copper oxides. Furthermore, copper oxides with different structures as electrode materials for lithium-ion batteries were also reviewed. This review presents a simple route to study the reaction-crystallization-performance relationship of Cu-based materials, which can be extended to other inorganic oxides.
 Keywords
;CuO;chemical reaction;crystallization;lithium-ion battery;
 Language
English
 Cited by
1.
Room temperature light-induced recrystallization of Cu2O cubes to CuO nanostructures in water, CrystEngComm, 2014, 16, 36, 8546  crossref(new windwow)
2.
Polymorphic crystallization of Cu2O compound, CrystEngComm, 2014, 16, 24, 5257  crossref(new windwow)
3.
An investigation on the tuning effect of glucose-capping on the size and bandgap of CuO nanoparticles, Advanced Powder Technology, 2016, 27, 2, 338  crossref(new windwow)
 References
1.
K. Chen and D. Xue, "Cuprous Oxide: The Only Example that Features Nanoscience and Nanotechnology." Chap. 10, Encyclopedia of Semiconductor Nanotechnology Edited by Ahmad Umar, Volume 2, American Scientific Publishers, 2012.

2.
M. Yin, C. Wu, Y. Lou, C. Burda, J. T. Koberstein, Y. Zhu, and S. O'Brien, J. Am. Chem. Soc. 127, 9506 (2005). crossref(new window)

3.
K. Chen, S. Song, and D. Xue, CrystEngComm 15, 144 (2013). crossref(new window)

4.
K. X. Yao, X. M. Yin, T. H. Wang, and H. C. Zeng, J. Am. Chem. Soc. 132, 6131 (2010). crossref(new window)

5.
Y. Sui, W. Fu, Y. Zeng, H. Yang, Y. Zhang, H. Chen, Y. Li, M. Li, and G. Zou, Angew. Chem. Int. Ed. 49, 4282 (2010). crossref(new window)

6.
Y. Si, K. Chen, and D. Xue, "Powder Engineering, Technology and Applications." (J. M. Barker Ed.), Chap. 6, Nova Science Publishers, New York, 2010.

7.
L. O. Grondahl, Rev. Mod. Phys. 5, 141 (1933). crossref(new window)

8.
W. R. G. Atkins and H. H. Poole, J. Mar. Biol. Assoc. UK 19, 67 (1933). crossref(new window)

9.
D. Snoke, Science 273, 1351 (1996). crossref(new window)

10.
G. G. Jernigan and G. A. Somorjai, J. Catal. 147, 567 (1994). crossref(new window)

11.
M. Hara, T. Kondo, M. Komoda, S. Ikeda, K. Shinohara, A. Tanaka, J. Kondo, and K. Domen, Chem. Commun., 357 (1998).

12.
P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, and J. M. Tarascon, Nature 407, 496 (2000). crossref(new window)

13.
S. T. Shishiyanu, T. S. Shishiyanu, and O. I. Lupan, Sens. Actuators B 113, 468 (2006). crossref(new window)

14.
M. Miyake, Y. C. Chen, P. V. Braun, and P. Wiltzius, Adv. Mater. 21, 3012 (2009). crossref(new window)

15.
C. H. Kuo, Y. C. Yang, S. Gwo, and M. H. Huang, J. Am. Chem. Soc. 133, 1052 (2011). crossref(new window)

16.
K. Chen and D. Xue, CrystEngComm 14, 8068 (2012). crossref(new window)

17.
K. Chen and D. Xue, CrystEngComm 15, 1739 (2013). crossref(new window)

18.
K. Chen and D. Xue, Nanosci. Nanotechnol. Lett. 4, 1 (2012). crossref(new window)

19.
K. Chen, Y. Si, and D. Xue, Mod. Phys. Lett. B 23, 3753 (2009).

20.
Y. Si and D. Xue, Mod. Phys. Lett. B 23, 3851 (2009). crossref(new window)

21.
K. Chen and D. Xue, Nanosci. Nanotechnol. Lett. 3, 383 (2011). crossref(new window)

22.
K. Chen, Y. Si, and D. Xue, Nanosci. Nanotechnol. Lett. 3, 423 (2011). crossref(new window)

23.
K. Chen and D. Xue, Mater. Focus 1, 65 (2012). crossref(new window)

24.
Q. Zhang, N. Li, J. Goebl, Z. Lu, and Y. Yin, J. Am. Chem. Soc. 133, 18931 (2011). crossref(new window)

25.
K. Chen and D. Xue, Mater. Focus 1, 203 (2012). crossref(new window)

26.
K. Chen and D. Xue, Mater. Focus 2, 35 (2013). crossref(new window)

27.
K. Chen, J. Liu, and D. Xue, Energy Environ. Focus 1, 50 (2012). crossref(new window)

28.
K. Chen, J. Liu, and D. Xue, Energy Environ. Focus 1, 109 (2012). crossref(new window)

29.
K. Chen, S. Song, D. Xue, J. Appl. Crystallogr. 46, 1603 (2013). crossref(new window)

30.
J. Liu, H. Xia, D. Xue, and L. Lu, J. Am. Chem. Soc. 131, 12086 (2009). crossref(new window)

31.
F. Liu, S. Song, D. Xue, H. Zhang, Adv. Mater. 24, 1089 (2012). crossref(new window)

32.
K. Chen and D. Xue, Phys. Chem. Chem. Phys. 15, 19708 (2013). crossref(new window)

33.
J. Xu, and D. Xue, Acta Mater. 55, 2397 (2007). crossref(new window)

34.
X. Zhao, X. Ren, C. Sun, X. Zhang, Y. Si, C. Yan, J. Xu, and D. Xue, Funct. Mater. Lett. 1, 167 (2008). crossref(new window)

35.
K. Chen, D. Xue, J. Adv. Microsc. Res. 7, 264 (2012).

36.
J. Liu, and D. Xue, Adv. Mater. 20, 2622 (2008). crossref(new window)

37.
C. Yan, and D. Xue, Adv. Mater. 20, 1055 (2008). crossref(new window)

38.
K. Chen and D. Xue, J. Phys. Chem. C 117, 22576 (2013). crossref(new window)

39.
K. Chen, S. Song, K. Li, D. Xue, CrystEngComm 15, 10367 (2013). crossref(new window)

40.
K. Chen, Y. D. Noh, K. Li, S. Komarneni, D. Xue, J. Phys. Chem. C 117, 10770 (2013). crossref(new window)

41.
K. Chen, S. Song, D. Xue, CrystEngComm 15, 10028 (2013). crossref(new window)