JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Formation of Threshold Switching Chalcogenide for Phase Change Switch Applications
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Formation of Threshold Switching Chalcogenide for Phase Change Switch Applications
Bang, Ki Su; Lee, Seung-Yun;
  PDF(new window)
 Abstract
The programmable switches which control the delivery of electrical signals in programmable logic devices are fabricated using memory technology. Although phase change memory (PCM) technology is one of the most promising candidates for the manufacturing of the programmable switches, the threshold switching material should be added to a PCM cell for realization of the programmable switches based on PCM technology. In this work, we report the impurity-doped (GST) chalcogenide alloy exhibiting threshold switching property. Unlike the GST thin film, the doped GST thin film prepared by the incorporation of In and P into GST is not crystallized even at the postannealing temperature higher than . This specific crystallization behavior in the doped GST thin film is attributed to the stabilization of the amorphous phase of GST by In and P doping.
 Keywords
Chalcogenide;Programmable switch;Phase change memory;Threshold switching;Doping;Crystallization;
 Language
English
 Cited by
 References
1.
K. N. Chen, L. Krusin-Elbaum, D. M. Newns, B. G. Elmegreen, R. Cheek, N. Rana, A. M. Young, S. J. Koester, and C. Lam, IEEE Electron Device Lett. 29, 131 (2008). crossref(new window)

2.
S. -Y. Lee, S. Jung, S. -M. Yoon, and Y. S. Park, J. Non-Cryst. Solids 358, 2405 (2012). crossref(new window)

3.
T. Lowrey, W. Parkinson, and G. Wicker, US Patent US 8379439 B2, 2013.

4.
S. Y. Lee, Y. S. Park, S. M. Yoon, S. Jung, S. H. Cheon, and B. G. Yu, US Patent US 20100148141 A1, 2010.

5.
J. Wang, R. Katz, J. Sun, B. Cronquist, J. McCollum, T. Speed, and W. Plants, IEEE Trans. Nucl. Sci. 46, 1728 (1999). crossref(new window)

6.
C. Auricchio, M. Borgatti, A. Martino, A. Maurelli, R. Pelliconi, and P. Rolandi, Proc. of European Solid State Device Research Conf. 211 (2003).

7.
S. -Y. Lee and Y. S. Park, J. Korean Vac. Soc. 19, 155 (2010). crossref(new window)

8.
Y. M. Lee, K. Kim, H. -J. Shin, M. -C. Jung, and Y. Qi, J. Korean Vac. Soc. 21, 348 (2012). crossref(new window)

9.
Y. -H. Huang, C. -H. Hang, Y. -J. Huang, and T. -E. Hsieh, J. Alloys Compd. 580, 449 (2013). crossref(new window)

10.
Y. Lai, Adv. Sci. Lett. 9, 523 (2012). crossref(new window)

11.
H. J. Kroezen, G. Eising, G. Ten Brink, G. Palasantzas, B. J. Kooi, and A. Pauza, Appl. Phys. Lett. 100, 094106 (2012). crossref(new window)

12.
P. -C. Chang, H. -W. Huang, C. -C. Chang, S. -C. Chang, M. -J. Tsai, and T. -S. Chin, Thin Solid Films 544, 107 (2013). crossref(new window)

13.
M. Anbarasu, M. Wimmer, G. Bruns, M. Salinga, and M. Wuttig, Appl. Phys. Lett. 100, 143505 (2012). crossref(new window)

14.
E. Morales-Sanchez, E. F. Prokhorov, J. Gonzalez-Hernandez, and A. Mendoza-Galvan, Thin Solid Films 471, 243 (2005). crossref(new window)

15.
Z. Yang and P. Lucasw, J. Am. Ceram. Soc. 92, 2920 (2009). crossref(new window)

16.
S. Prakash, S. Asokan, and D. B. Ghare, IEEE Electron Device Lett. 18, 45 (1997). crossref(new window)