JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Applications of Field-Effect Transistor (FET)-Type Biosensors
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Applications of Field-Effect Transistor (FET)-Type Biosensors
Park, Jeho; Nguyen, Hoang Hiep; Woubit, Abdela; Kim, Moonil;
  PDF(new window)
 Abstract
A field-effect transistor (FET) is one of the most commonly used semiconductor devices. Recently, increasing interest has been given to FET-based biosensors owing totheir outstanding benefits, which are likely to include a greater signal-to-noise ratio (SNR), fast measurement capabilities, and compact or portable instrumentation. Thus far, a number of FET-based biosensors have been developed to study biomolecular interactions, which are the key drivers of biological responses in in vitro or in vivo systems. In this review, the detection principles and characteristics of FET devices are described. In addition, biological applications of FET-type biosensors and the Debye length limitation are discussed.
 Keywords
Field-effect transistor;Biosensor;MOSFET;ISFET;Nanowire FET;
 Language
English
 Cited by
1.
Strategies in Protein Immobilization on a Gold Surface,;;

Applied Science and Convergence Technology, 2015. vol.24. 1, pp.1-8 crossref(new window)
1.
Strategies in Protein Immobilization on a Gold Surface, Applied Science and Convergence Technology, 2015, 24, 1, 1  crossref(new windwow)
2.
Metal oxide semiconductor field-effect transistor (MOSFET)-based direct monitoring of p53 in spiked serum, Journal of Industrial and Engineering Chemistry, 2016, 37, 95  crossref(new windwow)
3.
Detection of urea using urease and paramagnetic Fe3O4 particles incorporated into polyelectrolyte microcapsules, Process Biochemistry, 2016, 51, 2, 277  crossref(new windwow)
4.
Enzyme immobilization on metal oxide semiconductors exploiting amine functionalized layer, RSC Adv., 2017, 7, 32, 19656  crossref(new windwow)
5.
Electrochemical processes and mechanistic aspects of field-effect sensors for biomolecules, J. Mater. Chem. C, 2015, 3, 25, 6445  crossref(new windwow)
 References
1.
F. Patolsky, G. Zheng, O. Hayden, M. Lakadamyali, X. Zhuang, and C. Lieber, Proc. Natl. Acad. Sci. USA 101, 14017 (2004). crossref(new window)

2.
D. Kim, Y. Jeong, H. Park, J. Shin, P. Choi, J. Lee, and G. Lim, Biosens. Bioelectron. 20, 69 (2004). crossref(new window)

3.
E. Stern, J. Klemic, D. Routenberg, P. Wyrembak, D. Turner-Evans, A. Hamilton, D. LaVan, T. Fahmy, and M. Reed, Nature 445, 519 (2007). crossref(new window)

4.
E. Stern, E. Steenblock, M. Reed, and T. Fahmy, Nano Lett. 8, 3310 (2008). crossref(new window)

5.
S. D. Caras, D. Petelenz, and J. Janata, Anal. Chem. 57, 1920 (1985). crossref(new window)

6.
L. C. Clark Jr. and C. Lyons, Ann. N. Y. Acad. Sci. 102, 29 (1962).

7.
S. Park, T. Taton, and C. Mirkin, Science 295, 1503 (2002).

8.
Y. Fan, X. Chen, A. D. Trigg, C. Tung, J. Kong, and Z. Gao, J. Am. Chem. Soc. 129, 5437 (2007). crossref(new window)

9.
J. Fritz, M. K. Baller, H. P. Lang, H. Rothuizen, P. Vettiger, E. Meyer, H. Guntherodt, C. Gerber, and J. K. Gimzewski, Science 288, 316 (2000). crossref(new window)

10.
D. Yao, F. Yu, J. Kim, J. Scholz, P. Nielsen, E. Sinner, and W. Knoll, Nucleic Acids Res. 32, e177 (2004). crossref(new window)

11.
P. Bergveld, IEEE Trans. Biomed. Eng. 70 (1970).

12.
J. Janata and S. D. Moss, Biomed. Eng. 6, 241 (1976).

13.
S. Caras and J. Janata, Anal. Chem. 52, 1935 (1980). crossref(new window)

14.
M. Marrakchi, S. Dzyadevych, O. Biloivan, C. Martelet, P. Temple, and N. Jaffrezic-Renault, Materials Science & Engineering C 26, 369 (2006). crossref(new window)

15.
P. Sarkar, Microchem. J. 64, 283 (2000). crossref(new window)

16.
S. Setford, S. White, and J. Bolbot, Biosens. Bioelectron. 17, 79 (2002). crossref(new window)

17.
A. Sedra and K. Smith, Oxford University Press USA (2004).

18.
B. Streetman, Prentice Hall (1995).

19.
G. Zheng, F. Patolsky, Y. Cui, W. Wang, and C. Lieber, Nat. Biotechnol. 23, 1294 (2005). crossref(new window)

20.
Y. Cui, Q. Wei, H. Park, and C. Lieber, Science 293, 1289 (2001). crossref(new window)

21.
S. H. Han, S. K. Kim, K.Park, S. Y. Yi, H. Park, H. Lyu, M. Kim, and B. H. Chung, Anal. Chim. Acta 665, 79 (2010). crossref(new window)

22.
E. Souteyrand, J. Cloarec, J. Martin, C. Wilson, I. Lawrence, S. Mikkelsen, and M. Lawrence, J. Phys. Chem. B 101, 2980 (1997). crossref(new window)

23.
D. Kim, Y. Jeong, H. Park, J. Shin, P. Choi, J. Lee, and G. Lim, Biosens. Bioelectron. 20, 69 (2004). crossref(new window)

24.
M. Schöning and A. Poghossian, The Analyst 127, 1137 (2002). crossref(new window)

25.
H. Park, S. Kim, K. Park, H. Lyu, C. Lee, S. Chung, W. Yun, M. Kim, and B. Chung, FEBS Lett. 583, 157 (2009). crossref(new window)

26.
M. Fehr, D. Ehrhardt, S.Lalonde, and W. Frommer, Curr. Opin. Plant Biol. 7, 345 (2004). crossref(new window)

27.
H. Park, S. K. Kim, K. Park, S. Y. Yi, J. W. Chung, B. H. Chung, and M. Kim, Sensor Lett. 8, 233 (2010). crossref(new window)

28.
V. Volotovsky and N. Kim, Biosens. Bioelectron. 13, 1029 (1998). crossref(new window)

29.
A. Kharitonov, M. Zayats, A. Lichtenstein, E. Katz, and I. Willner, Sens. Actuators B 70, 222 (2000). crossref(new window)

30.
M. Zayats, A. Kharitonov, E. Katz, A. F. Buckmann, and I. Willner, Biosens. Bioelectron. 15, 671 (2000). crossref(new window)

31.
K. Park, S. Choi, M. Lee, B. Sohn, and S. Choi, Sens. Actuators B 83, 90 (2002). crossref(new window)

32.
E. Stern, R. Wagner, F. Sigworth, R. Breaker, T. Fahmy, and M. Reed, Nano Lett. 7, 3405 (2007). crossref(new window)

33.
D. Grieshaber, R. MacKenzie, J. Voros, and E. Reimhult, Sensors 8, 1400 (2008). crossref(new window)

34.
N. Elfstrom, R. Juhasz, I. Sychugov, T. Engfeldt, A. Karlstrom, and J. Linnros, Nano Lett. 7, 2608 (2007). crossref(new window)

35.
R. Schoch, J. Han, and P. Renaud, Rev. Mod. Phys. 80, 839 (2008). crossref(new window)