JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Structural and Electrical Properties of ZrO2 Films Coated onto PET for High-Energy-Density Capacitors
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Structural and Electrical Properties of ZrO2 Films Coated onto PET for High-Energy-Density Capacitors
Park, Sangshik;
  PDF(new window)
 Abstract
Flexible films as dielectric materials for high-energy-density capacitors were deposited on polyethylene terephthalate (PET) substrates by RF magnetron sputtering. The growth behavior, microstructure and electrical properties of the flexible films were dependent on the sputtering pressure and gas ratio. Although films were deposited at room temperature, all films showed a tetragonal crystalline structure regardless of the sputtering variables. The surface of the film became a surface with large white particles upon an increase in the gas ratio. The RMS roughness and crystallite size of the films increased with an increase in the sputtering pressure. The electrical properties of the films were affected by the microstructure and roughness. The films exhibited a dielectric constant of 21~38 at 1 kHz and a leakage current density of at 300 kV/cm.
 Keywords
Flexible film;Sputter;High-energy-density capacitor;Dielectric constant;Leakage current;
 Language
English
 Cited by
 References
1.
W. J. Sarjeant, J. Zirnheld, and F. W. MacDougall, IEEE Trans. Plasma Sci. 26, 1368 (1998). crossref(new window)

2.
M. T. Domonkos, S. Heidger, D. Brown, J. V. Parker, C. W. Gregg, K. Slenes, W. Hackenberger, S. Kwon, E. Loree, and T. Tran, IEEE Trans. Plasma Sci. 38, 2686 (2010). crossref(new window)

3.
J. L. Nash, Polymer Eng. Sci. 28, 862 (1988). crossref(new window)

4.
P. Karanja and R. Nath, IEEE Trans. Electr. Insul. 28, 294 (1993). crossref(new window)

5.
G. Love, J. Am. Ceram. Soc. 73, 339 (1990).

6.
G. Brennecka, J. Ihlefeld, J-P. Maria, B. Tuttle, and P. Clem, J. Am. Ceram. Soc. 93, 3935 (2010). crossref(new window)

7.
P. Vitanov, A. Harizanova, T. Ivanova, Ch. Trapalis, and N. Todorova, Mat. Sci. Eng. B 165, 178 (2009). crossref(new window)

8.
N. Q. Minh, J. Am. Ceram. Soc. 76, 563 (1993). crossref(new window)

9.
M. Sayer and K. Sreenivas, Science 247, 1056 (1990). crossref(new window)

10.
A. P. Huang and Paul K. Chu, Mat. Sci. Eng. B 121, 244 (2005). crossref(new window)

11.
K. Galicka-Fau, C. Legros, M. Andrieux, M. Brunet, J. Szade, and G. Garry, Appl. Surf. Sci. 255, 8986 (2009). crossref(new window)

12.
W. T. Tang, Z. F. Ying, Z. G. Hu, W. W. Li, J. Sun, N. Xu, and J. D. Wu, Thin Solid Films 518, 5442 (2010). crossref(new window)

13.
S. Y. Bae, H. S. Choi, S. Y. Choi, and Y. J. Oh, Ceram. Int. 26, 213 (2000). crossref(new window)

14.
S. Ben Amor, B. Rogier, G. Baud, M. Jacquet, and M. Nardin, Mat. Sci. Eng. B 57, 28 (1998). crossref(new window)

15.
L. I. Maissel and R. Glang, Handbook of Thin Film Technology (McGraw-Hill Inc. New York, USA, 1970), p. 22.

16.
T. Minami, S. Ida, and T. Miyata, Thin Solid Films 416, 93 (2002).

17.
V. Assuncao, E. Fortunato, A. Marques, H. Aguas, I. Ferreira, M. E. V. Costa, and R. Martins, Thin Solid Films 427, 401 (2003). crossref(new window)

18.
P. Zeman and S. Takabayashi, Surf. Coat. Technol. 153, 93 (2002). crossref(new window)

19.
R. F. Bunshah, Handbook of Deposition Technologies for Films and Coatings (2nd ed. Noyes Publication, USA, 1994), p. 270.

20.
S. K. Park, J. I. Han, W. K. Kim, and M. G. Kwak, Thin Solid Films 397, 49 (2001). crossref(new window)

21.
C. Y. Ma, F. Lapostolle, P. Briois, and Q. Y. Zhang, Appl. Surf. Sci. 253, 8718 (2007). crossref(new window)

22.
P. Y. Kuei, J. D. Chou, C. T. Huang, H. H. Ko, and S. C. Su, J. Cryst. Growth 314, 81 (2011). crossref(new window)

23.
Y. B. Chen and C. L. Huang, Surf. Coat. Technol. 201, 643 (2006).