JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Properties of Silicon for Photoluminescence
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Properties of Silicon for Photoluminescence
Baek, Dohyun;
  PDF(new window)
 Abstract
For more than five decades, silicon has dominated the semiconductor industry that supports memory devices, ICs, photovoltaic devices, etc. Photoluminescence (PL) is an attractive silicon characterization technique because it is contactless and provides information on bulk impurities, defects, surface states, optical properties, and doping concentration. It can provide high resolution spectra, generally with the sample at low temperature and room-temperature spectra. The photoluminescence properties of silicon at low temperature are reviewed and discussed in this study. In this paper, silicon bulk PL spectra are shown in multiple peak positions at low temperature. They correspond with various impurities such as In, Al, and Be, phonon interactions, for example, acoustical phonons and optical phonons, different exciton binding energies for boron and phosphorus, dislocation related PL emission peak lines, and oxygen related thermal donor PL emissions.
 Keywords
Photoluminescence;Silicon;Bulk defects;Lifetime;Dislocation defects;
 Language
English
 Cited by
1.
유기발광소자를 위한 해양 미세조류 유래 물질 및 광 발광 탐색,정상목;이한성;강슬기;이한주;손지수;전재혁;채희백;신현웅;

한국환경생태학회지, 2015. vol.29. 4, pp.564-569 crossref(new window)
 References
1.
R. K Willardson et al., Semiconductors and Semimetals, 49, 77 (1997). crossref(new window)

2.
R. Sauce et al., Appl. Phys. A, 36, 1 (1985).

3.
P. Bruesch, Phonons: Theory and Experiments II, Springer-Verlag, 1, 1986.

4.
C. Kittel, Introduction to Solid State Physics, John Wiley & Sons, 83, 19886.

5.
O. Madelung, Semiconductor Basic Data, Springer-Verlag, 11, 1996.

6.
Collaway, J. Quantum Theory of the Solid State, New York, 154, 1974.

7.
P. J. Dean et al., Phys. Rev. 161, 711 (1967). crossref(new window)

8.
J. Weber et al., J. Lumin., 24/25, 155 (1981). crossref(new window)

9.
T. G. Brown et al., Phys. Rev. B37, 2699 (1988).

10.
R. A. Modavis et al., Appl. Phys. Lett. 59, 954 (1990).

11.
M. O. Henry et al., J. Phys. C, 14, 255 (1981). crossref(new window)

12.
C. S. Fuller et al., Phys. Rev. 96, 833 (1954).

13.
F. Shimura, Semiconductors and Semimetals, 42, 251 (1994). crossref(new window)

14.
W. Kaiser et al., Phys. Rev. 112, 1546 (1958). crossref(new window)

15.
G. S. Oehrlein et al., In Proc. Of the 13th Int. Conf. On Defects in Semi. 701, 1984.

16.
M. Tajima et al., Jpn. J. Appl. 18, 1401 (1979). crossref(new window)

17.
A. Steele et al., Can. J. Phys. 67, 268 (1989). crossref(new window)

18.
J. Weber et al., MRS Symposia Proc. 59, 147 (1986).

19.
A. Doren et al., Material Science Forum 10-12, 967 (1986). crossref(new window)

20.
M. Thewalt et al., Phys. Rev. Lett. 57, 1939 (1986). crossref(new window)

21.
N. A Drozdov et al., Sov. Phys. JETP Lett. 23, 597 (1976).

22.
N. A Drozdov et al., Phys. Stat. Sol B83, 137 (1977).

23.
K. Sumino et al., Phys. Stat. Sol A78, 639 (1983). crossref(new window)

24.
D. Gwinner et al., Phys. Stat. Sol. A65, 99 (1981).

25.
D. Gwinner et al, J. Phys. 44, 141 (1983). crossref(new window)

26.
N. A. Drozdov et al., Sov. Phys. JETP letter. 23, 597 (1976).

27.
R. K. Crouch, Phys. Rev. B5, 3111 (1972).