JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Electromagnetic Resonant Tunneling System: Double-Magnetic Barriers
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Electromagnetic Resonant Tunneling System: Double-Magnetic Barriers
Kim, Nammee;
  PDF(new window)
 Abstract
We study the ballistic spin transport properties in a two-dimensional electron gas system in the presence of magnetic barriers using a transfer matrix method. We concentrate on the size-effect of the magnetic barriers parallel to a two-dimensional electron gas plane. We calculate the transmission probability of the ballistic spin transport in the magnetic barrier structure while varying the width of the magnetic barriers. It is shown that resonant tunneling oscillation is affected by the width and height of the magnetic barriers sensitively as well as by the inter-spacing of the barriers. We also consider the effect of additional electrostatic modulation on the top of the magnetic barriers, which could enhance the current spin polarization. Because all-semiconductor-based devices are free from the resistance mismatch problem, a resonant tunneling structure using the two-dimensional electron gas system with electric-magnetic modulation would play an important role in future spintronics applications. From the results here, we provide information on the physical parameters of a device to produce well-defined spin-polarized current.
 Keywords
Spin device;Magnetic barrier;Hybrid quantum structure;Ballistic transport;
 Language
English
 Cited by
 References
1.
S. Datta and B. Das, Appl. Phys. Lett. 56, 665 (1990). crossref(new window)

2.
G. A. Prinz, Science 282, 1660 (1998). crossref(new window)

3.
M. Ramezani Masir, P. Vasilopoulos, and F. M. Peeters, Appl. Phys. Lett. 93, 242103 (2008). crossref(new window)

4.
Zhenhua Wu, F. M. Peeters, and Kai Chang, Phys. Rev. B 82, 115211 (2010). crossref(new window)

5.
K. C. Seo, G. Ihm, K.-H. Ahn, and S. J. Lee, J. Appl. Phys. Lett. 95, 7252 (2004).

6.
J. W. Kim, N. Kim, S. J. Lee, and T. W. Kang, Semicon. Sci. Technol. 21, 647 (2006). crossref(new window)

7.
G. Papp and F. M. Peeters, Appl. Phys. Lett 78, 2184 (2001). crossref(new window)

8.
Ronald Benjamin and Colin Benjamin, Phys. Rev. B 69, 085318 (2004). crossref(new window)

9.
T. Kimura, Y. Otani, T. Sato, S. Takahashi, and S. Maekawa, Phys. Rev. Lett. 98, 156601 (2007). crossref(new window)

10.
S. O. Valenzuela and M. Tinkham, Nature 442, 176 (2006). crossref(new window)

11.
Y. M. Lu, J. W. Cai, S. Y. Huang, D. Qu, B. F. Miao, and C. L. Chien, Phys. Rev. B 87, 2204409(R) (2013).

12.
N. Vliestra, J. Shan, V. Castel, and B. J. van Wees, Phys. Rev. B 87, 184421 (2013). crossref(new window)

13.
E. van der Bijl, R. E. Troncoso, and R. A. Duine, Phys. Rev. B. 88, 064417 (2013). crossref(new window)

14.
Feng Zhai and H. Q. Xu, Appl. Phys. Lett. 88, 032502 (2006). crossref(new window)

15.
Y. Wang, Y. Jiang, X. W. Zhang, and Z. G. Yin, J. Appl. Phys. Lett. 108, 073703 (2010).

16.
N. Kim and H. Kim, arXiv:1403.0067 [cond-mat. mes-hall].

17.
A. Slobodskyy, C. Gould, T. Slobodskyy, C. R. Becker, G. Schmidt, and L. W. Molenkamp, Phys. Rev. Lett. 90, 246601 (2003). crossref(new window)

18.
M. K. Li, T. W. Kang, and N. M. Kim, Appl. Phy. Lett. 94, 123505 (2009). crossref(new window)